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Abstract: This paper treats identification of continuous-time output error (OE)
models based on sampled data. The exact method for doing this is well known
both for data given in the time and frequency domains. This approach becomes
somewhat complex, especially for non-uniformly sampled data. We study various
ways to approximate the exact method for reasonably fast sampling. While an
objective is to gain insights into the non-uniform sampling case, this paper only
gives explicit results for uniform sampling.Copyright c©2005 IFAC
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1. INTRODUCTION

In this contribution we shall discuss identification
of possibly grey-box structured linear continuous
time models from discrete-time measurements of
inputs and outputs. This as such is a well known
problem and discussed, e.g. in (Ljung, 1999).
Several techniques for identification of continuous
time models are also discussed in, among many
references, (Rao and Garnier, 2002), (Unbehauen
and Rao, 1990), (Mensler, 1999).

The “optimal” solution is well known as a
Maximum-likelihood (ML) formulation. It consist
of computing the Kalman filter predictions of the
output at the sampling instants by sampling the
continuous time model over the sampling instants.
These predictions are functions of the parameters
in the continuous time model and by minimizing
the sum of squared prediction errors with respect
to the parameters, the Maximum likelihood esti-
mate is obtained in case of Gaussian disturbances.
For equidistantly sampled data, this method is

also implemented in the System Identification
Toolbox, (Ljung, 2003).

No method can be better, in theory, asymptot-
ically as the number of data tends to infinity,
than this maximum likelihood method. However,
it may encounter numerical problems at fast sam-
pling, and it may be computationally demanding
for irregularly sampled data.

We shall therefore here investigate some ap-
proximations based on frequency domain data
that may be useful alternatives to the basic
ML method. For relevant references on frequency
domain identification see, e.g. (Pintelon and
Schoukens, 2001). While an important objective
for us is to gain insights into the case of irregular
sampling we shall here concentrate on equidistant
sampling to bring out the essential issues.

When we describe some expressions and implica-
tions for identification we shall occasionally use
code from the Matlab toolbox (Ljung, 2003).



2. NOTATION AND SOME BASIC FACTS

2.1 The model and the transformed signals

The problem is to estimate the parameters θ in a
continuous time transfer function

yu(t) = Gc(p, θ)u(t) (1)

The output is observed at sampling instances tk
with some measurement noise

y(tk) = yu(tk) + e(k) (2)

As mentioned in the introduction, we shall through-
out this paper consider equidistant sampling with
sampling interval Ts: tk = kTs. The output noise
term e is assumed to be Gaussian white noise.
For the input u and the output y we define the
continuous time Fourier transforms, restricted to
an observation interval [0 T ]:

Yc(iω) =
∫ T

0

y(t)e−iωtdt (3)

and analogously for Uc(iω). From the sampled
data of y(t), y(kTs), k = 1, 2, . . . , N(NTs = T )
we can define the discrete-time Fourier transform

Yd(eiωTs) = Ts

N∑

k=1

y(kTs)e−iωkTs (4)

and similarly for Ud(eiωTs).

2.2 Relations between continuous and discrete-time
Fourier transforms

If signals at equidistant sample points u(kTs) are
known, the discrete time Fourier transform (4) can
be readily computed. If also the intersample be-
havior of the signal is known, the continuous time
signal can be reconstructed and the continuous
time Fourier transform (3) can be determined.

For example if the signal is constant between
the sampling points (“zero-order hold”, zoh) it is
straightforward to establish that

Uc(iω) = HTs(iω)Ud(eiωTs) (5a)

HTs(iω) =
1− e−iωTs

Tsiω
(5b)

Similarly, if the signal is piecewise linear, connect-
ing the sampled valued (“first order hold”) we
have

Hf
Ts

(iω) = e−iωTs

(
eiωTs − 1

Tsiω

)2

(6)

If the signal is band-limited with all power below
the Nyquist frequency, which corresponds to the
case where the intersample values are obtained
by trigonometric interpolation we have the simple
relationship

Uc(iω) =

{
Ud(eiωTs), |ω| ≤ π/Ts

0 |ω| > π/Ts

(7)

The general relationship between Yc and Yd comes
from Poisson’s summation formula:

Yd(eiωTs) =
∞∑

k=−∞
Yc(iω + i

2π

Ts
k) (8)

2.3 Sampling the model

If the intersample behavior of the input is known,
it is easy to compute a discrete-time pulse transfer
function

Gd(q, θ) (9)
that describes how equally sampled input-output
data (sampling period Ts) relate. Formulas for
Gd based on a state-space representation of the
transfer function Gc(p, θ) are given in all relevant
textbooks, like (Åström and Wittenmark, 1984).

Direct expressions for Gd can also be given. If
the input is zero-order hold (constant between
samples) we have

Gd(eiωTs) =
(

1− e−iωTs

Ts

) ∞∑

k=−∞

Gc(iω + i2π
Ts

k)

iω + i 2π
Ts

k
.

(10)
We refer to the discussion around Theorems 4.1
and 4.2 in (Åström and Wittenmark, 1984), and
to section 8.3.1 in (Gillberg, 2004) for more details
on this. (See also Problem 2G.4 in (Ljung, 1999).)
The similarity with the Poisson summation for-
mula for Fourier transforms in (8) is also striking.

2.4 Maximum likelihood estimates

Suppose that we have available values Yd(eiωkTs)
and Ud(eiωkTs), k = 1, 2, . . . , Nω of the discrete-
time Fourier transforms (4). Suppose the values
of Y are independent at different frequencies and
that we neglect transient (non-periodic) effects.
Then the ML-procedure for estimating the param-
eters is

Vd(θ) ,
Nω∑

k=1

∣∣Yd(eiωkTs)−Gd(eiωkTs , θ)Ud(eiωkTs)
∣∣2

(11)
If, on the other hand values Yc(iωk) and Uc(iωk),
k = 1, 2, . . . , Nω of the continuous-time Fourier
transforms (3), the ML method under the same
assumptions is

Vc(θ) ,
Nω∑

k=1

|Yc(iωk)−Gc(iωk, θ)Uc(iωk)|2 .

(12)
See, e.g. page 230 in (Ljung, 1999). Independence
of the Fourier transforms at different frequencies
is discussed in detail in e.g. (Brillinger, 1981),
Chapter 5 and in (Gillberg, 2004), Chapter 3.
The bottom line is that the frequencies should be
separated by an interval that is 2π/T .



3. THE CRUX: GETTING YC FROM YD

The most direct way of estimating the continuous
time model Gc(iω, θ) is to use the criterion (12).
This requires the continuous time Fourier trans-
forms. If the intersample behavior of the input
is known, which is not unreasonable, Uc can be
computed from the sampled input values, e.g. by
any of the methods described in Section 2.2. It
could be a bigger challenge to find Yc. If the
intersample behavior of the input is known, and
if the system is known, the intersample behavior
of the output can also be calculated, and hence
Yc be determined. But note that this can be done
only if the system is known! We shall in Sections
5 and 6 discuss approximations of this idea, that
do not require knowledge of the true system.

Note that y has contributions both from u and
from the noise e. For the estimation result it
is only necessary to obtain a correct treatment
of contribution yu. For example if the input u
is band-limited, so will yu be, and the simple
formulas (7) can be applied both to input and
output.

The simplest approach to this problem is to push
one’s luck and assume that the data are sampled
so fast that they can be considered as band-
limited, i.e. using (7). If the true system is of
low pass character, this assumption may be more
plausible for the output than for the input. In
Matlab terms this would mean

z = iddata(y,u,Ts);
zf = fft(z);
zf.ts = 0; %Making the transforms

%continuous time
m = oe(zf,[nb nf]);

We will label this Approach 1.

4. USING THE SUMMATION FORMULA
FOR GD

The “correct” method is, as mentioned in the
introduction to use (11) with a carefully sampled
transfer function Gd. For this, one could use
the traditional state-space based formulas or the
infinite sum (10). This sum could be split into the
central term (k = 0) and the remaining infinite
number of terms, which can be written

Gd(eiωTs , θ) = Gc(iω, θ)HTs(iω) + R(iω) (13)

where HTs is given by (5b).

4.1 Using just the central term

If the system is of low pass character and Ts is
small R(iω) will be small. For example, consider
the system

Gc(p) =
1

s2 + 3s + 2
(14)

and Ts=1, which is not very fast sampling, then
the terms for k = ±1 in (10) at ω = 0 is about
3% of the central term and the terms for k = ±2
about 10−3 of the central term.

It could thus be a reasonable approximation to use
just the central term in (10) in (11). This gives the
criterion

Vd(θ) =
Nω∑

k=1

|Yd(eiωkTs) (15)

−Gc(iωk)HTs
(iωk)Ud(eiωkTs)|2

(16)

=
Nω∑

k=1

|Yd(eiωkTs)−Gc(iωk)Uc(iωk)|2 (17)

where the last step follows from (5) for a zoh
input. Note the interpretation of this step! We
have arrived at a continuous time criterion (12)
where the zoh input is correctly translated to
continuous time and for the output a band-limited
assumption (7) is used. This is in line with the
assumption that the system is low pass in relation
to the sampling interval. In Matlab terms we
have

z = iddata(y,u,Ts);
zf = fft(z);
omi = i*Ts*zf.fre;
H = (1-exp(-omi))./(omi);
zf.u = H.*zf.u;
zf.ts = 0;
m = oe(zf,[nb nf]);

We label this Approach 2.

4.2 Using more terms

An obvious variant of this approach is to involve
more terms from (10) in (11). If k = ±1, . . . ± F
are included we call this Approach 3-F. Clearly, as
F →∞ we approach the “correct” method.

5. APPROXIMATION OF YC AT HIGH
FREQUENCIES

We mentioned in Section 3 that the correct trans-
lation from Yd to Yc must involve the true system.
Let us investigate this.

Let Gd(eiωTs , θ) be the sampled model, using as
assumption that the input is zoh. Then we have

Yd(eiωTs) = Gd(eiωTs , θ)Ud(eiωTs)

We also have the continuous time relationship

Yc(iω) = Gc(iω, θ)Uc(iω)

= Gc(iω)HTs(iω)Ud(eiωTs)



using (5). This gives the following relationship for
Yc:

Yc(iω) = F (iω, θ0)Yd(eiωTs) (18a)

F (iω, θ) =
Gc(iω, θ)HTs(iω)

Gd(eiωTs , θ)
(18b)

The problem would thus be solved if the function
F (s, θ0) were known. But it depends on the un-
known true parameter θ0. So what can we do? A
possibility is to focus on high frequencies. When
the break-points in the Bode plot of Gc(iω) are
passed, the system has a roll-off that behaves like
a series of integrators

Gc(s) ∼ b0

s`
(19)

where ` is the pole excess of the system, i.e. the
denominator degree minus the numerator degree.
The idea is thus to compute F in (18b) for the
model (19). This is a problem that has been
studied in connection with sampling zeros, e.g. in
(Åström et al., 1984), (Wahlberg, 1988), (Weller
et al., 2001). See also (Gillberg and Ljung, 2005)
and (Goodwin et al., 2005) at this congress.

For the system (19) the function F takes the form:

F (`)
c (iω) =

`!(eiωTs − 1)`+1

(iωTs)`+1(eiωTsB`(eiωTs))
(20)

where Bl(z) are the Euler-Frobenius polynomials
(see the references above):

B1(z) = 1 (21a)
B2(z) = z + 1 (21b)
B3(z) = z2 + 4z + 1 (21c)

B4(z) = z3 + 11z2 + 11z + 1 (21d)

We have the following approximation result:

Theorem 1. Let Gc(s) be a transfer function with
pole excess ` ≥ 1, and let Gd(z) be the sampled
counterpart using a zero-order hold input. Let
HT (s) be given by (5b), F (s, θ) by (18b) and let
F

(`)
c (iω) be defined by (20)-(21). Then

∣∣∣F (iω, θ)− F (`)
c (iω)

∣∣∣ ≤ CT `+1
s (22)

PROOF. Since ω is below the Nyquist frequency

Gc

(
iω + i2π

Ts
k
)

b0

(iω+i 2π
Ts

k)`

→ 1 (23)

as Ts → 0 if k 6= 0 and b0 is defined as in (19).
This has the consequence that

Gc(iω)H(iω)
Gd(eiωTs)

→
Gc(iω)

iω
Gc(iω)

iω +
∑

k 6=0
b0

(iω+i 2π
Ts

k)`+1

.

as Ts → 0 if we insert (23) in (10). From Lemma
3.2 in (Wahlberg, 1988)

F (`)
c (iω) =

1
(iω)`+1

1
(iω)`+1 +

∑
k 6=0

1
(iω+i 2π

Ts
k)`+1

.

By putting the two previous expressions on a
common denominator, we get the the following
relation
Gc(iω)H(iω)

Gd(eiωTs)
− F (`)

c (iω) → F (`)
c (iω)R(iω)S(iω)

where

R(iω) =
1−Gc(iω) (iω)`

b0
Gc(iω)

iω +
∑

k 6=0
b0

(iω+i 2π
Ts

k)`+1

and

S(iω) =
∑

k 6=0

b0

(iω + i2π
Ts

k)`+1
.

Since F and R are bounded in ω, ω is below the
Nyquist frequency and the terms of S are bounded
as∣∣∣∣∣∣∣

1(
iω + i 2π

Ts
k
)`+1

∣∣∣∣∣∣∣
≤

∣∣∣∣
T `+1

s

(iωTs + i2πk)`+1

∣∣∣∣ ≤ C

(
Ts

k

)`+1

if k 6= 0, the result
∣∣∣∣
Gc(iω)H(iω)

Gd(eiωTs)
− F (`)

c (iω)
∣∣∣∣ ≤

∣∣∣F (`)
c

∣∣∣ |R| |S| ≤ CT `+1
s

follows.

In Matlab code, using this approach in (12)
would give

z = iddata(y,u,Ts);
zf = fft(z);
zf.u = H.*zf.u % same as above
zf.y = F.*zf.y % F defined in (5b)
zf.Ts = 0;
m = oe(zf, [nb nf]);

We call this Approach 4.

6. USING POISSON’S FORMULA

Yet another approach to (approximately) deter-
mine Yc from Yd is to start from the Poisson
summation expression (8). This gives

Yc(iω) = Yd(eiωTs)−
∑

k 6=0

Yc(iω + i
2π

Ts
k)

Note that, for zoh input

Yc(iω + i
2π

Ts
k) = Gc(iω + i

2π

Ts
k)Uc(iω + i

2π

Ts
k)

= Gc(iω + i
2π

Ts
k)HTs(iω + i

2π

Ts
k)Ud(eiωTs)

=
Gc(iω + i 2π

Ts
k)

iω + i2π
Ts

k

(
1− e−iωTs

Ts

)
Ud(eiωTs)



using that ei2πk = 1. This means that the correc-
tion sum term above takes the form

Yc(iω) = Yd(eiωTs)−R(iω)Ud(eiωTs)

where R is defined in (13). Note that R consists
of high frequency terms of Gc of the kind that
were ignored in Approach 2. The idea now is not
to ignore these terms (which would be the band-
limited output approach 2) but to approximate
them with the assumption (19). This has some
resemblance with approach 4, but should be more
accurate, since the central (k = 0) term is kept as
the original system and is not approximated with
(19). The disadvantage is that the high frequency
gain b0 in (19) will not be canceled, but will
have to be kept as an additional parameter to be
estimated.

Now, it is easy to realize that R(iω) for the system
(19) will be the difference between the sampled
frequency function for b0/sl and the central term
b0HTs

(iω)/(iω)l. Using the sampling result form
(Åström et al., 1984), we then obtain

R(iω) ≈ b0F
(`)
dc (iω)

= b0T
l
s

Bl(eiωTs)

l! (eiωTs − 1)l
− b0

(iω)l
HTs(iω)

(24)
where Bl is given by (21) and HT by (5b).

The resulting approximation will be

Yc(iω) = Yd(eiωTs)− b0F
(`)
dc (iω)Ud(eiωTs)

and the continuous time criterion (12) takes the
form

Vc(θ) =
Nω∑

k=1

|(Yd(eiωkTs)− b0F
(`)
dc (iωk)Ud(eiωkTs))

−Gc(iωk, θ)Uc(iωk)|2
(25)

or

Vc(θ) =
Nω∑

k=1

|Yd(eiωkTs)

− (b0F
(`)
dc (iωk) + Gc(iωk, θ)HTs(iωk))Ud(eiωkTs)|2

Notice that an alternative interpretation of (25)
is that is is based on the sampled expression (11)
using an expression for Gd being (10) where Gc

for the non-central terms (k 6= 0) is replaced by
(19). This can also be seen as an illustration of the
kinship between the Poisson summation formula
(8) and the sampling expression (10).

We call this Approach 5.

7. NUMERICAL ILLUSTRATION

We shall in this section illustrate how the different
approaches perform for some systems with differ-
ent sampling intervals. In all cases we simulate

the system with a binary input with a frequency
contents that is adapted to the sampling interval
Ts:

u = iddata([],idinput(10000,’rbn’,...
[0 min(1,Ts)]),Ts);

No noise was added to the simulations, and a long
data record was chosen, since we wanted to study
the bias effects of the approximations involved.
The results are given in the following tables.

True/Ts 0.02 0.1 0.5 1 1.5

Appr 1

1 0.9753 0.8794 0.2614 -0.5413 -0.3764
0.5 0.5137 0.5529 1.4552 1.4623 0.5553
2 1.9443 1.7432 1.3928 1.5599 1.0350
3 2.9972 2.9670 4.8357 5.6280 3.1000

Appr 2

1 1.0002 1.0020 0.9879 0.5292 -0.1094
0.5 0.5002 0.5046 0.6266 1.4389 1.0510
2 2.0006 2.0003 1.9033 1.3682 0.7592
3 3.0005 3.0046 3.1556 4.8057 4.2858

Appr 4

1 0.9999 0.9949 0.8791 0.5541 0.1864
0.5 0.5000 0.5013 0.5272 0.6046 0.5351
2 2.0003 1.9929 1.8353 1.4233 1.0898
3 3.0000 2.9986 2.9659 3.0044 2.8335

Appr 5

1 1.0047 0.9994 0.9866 0.8223 0.4488
0.5 0.4956 0.5040 0.5020 0.5244 0.4341
2 2.0288 2.0015 1.9760 1.6736 1.1949
3 2.9966 3.0093 3.0037 2.9537 2.3787

Table 1. Results for the system s+0.5
s2+2s+3 .

This system has a pole excess of 1 and
a bandwidth of 8.60 rad/s

True/Ts 0.02 0.1 0.5 1 1.5

F = 1

1 1.0047 1.0003 1.0093 0.9263 0.3645
0.5 0.4957 0.5057 0.5416 0.6516 0.5723
2 2.0288 2.0019 1.9882 1.7926 1.0915
3 2.9968 3.0109 3.0391 3.1560 2.7964

F = 2

1 1.0047 1.0000 1.0072 0.9791 0.5087
0.5 0.4957 0.5050 0.5245 0.5822 0.5119
2 2.0288 2.0018 1.9962 1.9114 1.3011
3 2.9968 3.0103 3.0215 3.0696 2.6539

F = 5

1 1.0047 0.9997 1.0038 1.0036 0.6869
0.5 0.4957 0.5045 0.5109 0.5341 0.4856
2 2.0288 2.0017 1.9998 1.9831 1.5824
3 2.9966 3.0098 3.0087 3.0260 2.6876

F = 10

1 1.0047 0.9995 1.0021 1.0049 0.8129
0.5 0.4957 0.5042 0.5056 0.5170 0.4878
2 2.0288 2.0016 2.0004 1.9969 1.7655
3 2.9967 3.0096 3.0042 3.0127 2.7935

Table 2. Results for approach 3 (Section
4.2) for the same system as in Table 1

for different values of F.

It should be noted that in practice it may be
essential to limit the fit in (11) and (12) to
frequencies that do not extend all the way to
the Nyquist frequency, since the observations may
be less reliable at higher frequencies. Another



True/Ts 0.02 0.1 0.5 1 1.5

Appr 1

1 0.9805 0.9096 0.6692 0.4873 0.3584
2 1.9550 1.7887 1.2413 0.8993 0.7554
3 2.9805 2.9084 2.6481 2.4271 2.2400
4 3.8937 3.5078 2.2317 1.4376 1.0490

Appr 2

1 1.0017 1.0000 0.9996 0.9857 0.9050
2 2.0031 2.0000 1.9993 1.9729 1.8921
3 3.0018 3.0000 2.9997 2.9900 2.9346
4 4.0061 4.0000 3.9987 3.9458 3.7830

Appr 4

1 1.0018 1.0000 1.0015 1.0268 0.9641
2 2.0032 1.9998 2.0002 1.9821 1.5172
3 3.0019 3.0000 3.0002 3.0044 2.8956
4 4.0063 3.9996 4.0013 3.9758 3.1243

Appr 5

1 1.0346 0.9993 1.0028 0.9949 0.9900
2 2.1001 2.0012 2.0092 1.9930 2.0436
3 3.0554 2.9998 3.0040 2.9966 2.9994
4 4.1943 4.0038 4.0172 3.9863 4.0891

Table 3. Results for the system
1

s3+2s2+3s+4 . This system has a pole ex-
cess of 3 and a bandwidth of 2.1 rad/s

Ts 0.02 0.1 0.5 1 1.5

Appr 1 4.0081 4.0388 4.2330 4.4837 4.7438

Appr 2 3.9988 3.9935 3.9988 3.9995 4.0020

Appr 4 3.9987 3.9935 3.9988 3.9999 4.0038

Appr 5 3.9444 3.9855 3.9989 3.9951 3.9689

Table 4. Estimated values of a for the
model a

s3+a2s2+as+a with true value a =
4. This system has a pole excess of 3 and

a bandwidth of 0.75 rad/s.

reason is that F in (20) will tend to infinity
at the Nyquist frequency for l being even. (The
sampled multi-integrator has a zero at the Nyquist
frequency.)

8. CONCLUSIONS

We have investigated some ways to estimate con-
tinuous time models from discrete time data using
frequency domain methods. It should be repeated
that the “best” way to do this is known: to sample
the model, but retaining the continuous parame-
terization. Some approximate sampling methods
have been discussed for the frequency domain ap-
proach, that can be seen as ways to approximately
calculate the continuous time Fourier transform
of the output from its DFT. The conclusion is
that the bias caused by these approximation can
be quite small, even at sampling rates that are
not fast compared to the system dynamics. It is
of special interest to see how these approaches
may carry over to the case on non-equidistant
sampling.
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Åström, K. J. and B. Wittenmark (1984). Com-
puter Controlled Systems. Prentice-Hall. En-
glewood Cliffs.
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