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Abstract: In this paper, a new framework for the synchronization of chaotic sys-
tems is presented. The synchronization problem of a large class of chaotic systems
is formulated as an observer synthesis problem for an appropriate class of linear
parameter-varying (LPV) systems. The result introduced in this paper shows that
LPV techniques can successfully be used in the context of chaotic systems synchro-
nization. Two examples are considered in order to show the applicability of the LPV
approach. Copyright c©2005 IFAC
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1. INTRODUCTION

A new concept that evolved rapidly in the last
few years in the modern communication technol-
ogy is the secure communication using synchro-
nization between chaotic systems. This has mo-
tivated a number of works in the area of chaos
synchronization. A detailed survey of chaotic se-
cure communication systems is given by Yang
(2004). Since the pioneering works of Pecora and
Carroll (1990),Carroll and Pecora (1991), many
approaches, leading to a better understanding of
the synchronization problem have been proposed
by Ashwin et al. (1994); Haegy et al. (1994) and
Ashwin et al. (1996).

As the chaos synchronization problem can be
reformulated as an observer design one, the
observer-based approach becomes one of the most
attractive techniques. This kind of approach has
extensively been investigated in the recent re-
search works by Grassi and Mascolo (1997);
Morgul and Solak (1996, 1997); Nijmeijer and Ma-
reels (1997); Ushio (1999); H. (2001); Celikovsky
and Chen (2002). We can mention in this con-
text the approaches using nonlinear Lipschitz sys-
tems for describing the chaotic model as proposed

by De Angeli et al. (1995); Grassi and Mascolo
(1997); Liao and Huang (1999); Miller and Grassi
(2001); Grassi and Miller (2002). The major draw-
back of the approach developed in these papers
comes from the fact that the nonlinear term is
measured in the output signal.

A parameter control method by a scalar signal is
proposed for the implementation of hyper-chaos
synchronization in Duan and Yang (1997). The
synchronization of Rössler and Chen chaotic sys-
tems is obtained by using active control in Ag-
iza and Yassen (2001). In addition to the above
approaches, for the class of nonlinear discrete-
time systems, an extended Kalman filtering was
proposed by Cruz and Nijmeijer (1999); Boutayeb
(2005) while extended observers are used by Hui-
jberts et al. (2001); Lilge (1999).

In this paper, we propose a new approach for the
synchronization of chaotic systems. This approach
is based on the fact that many chaotic systems
can be transformed into linear parameter-varying
(LPV) systems when the output signal is chosen
appropriately. The result introduced in this paper
shows that LPV techniques can successfully be
used in the context of chaotic systems synchro-



nization. To our knowledge this is the first time
LPV techniques are used in this context. Based on
existing results, a sufficient condition is given in
order to design the observer gain guaranteeing the
stability of the synchronization error. This con-
dition is expressed as a LMI solvability problem
and hence easily tractable by convex optimization
techniques. The proposed approach has several
advantages over the existing methods. It proves
to be simple and rigorous. It requires neither neg-
ative Lyapunov exponents nor initial conditions
belonging to the same basin of attraction in or-
der to guaranty the synchronization between the
response-system and the drive-system. Moreover,
global synchronization is achievable in a system-
atic way for many chaotic systems reported in the
literature.

This paper is organized as follows. In section 2,
we introduce the class of systems to be studied
and we explain the chaos synchronization prob-
lem. The main contribution of our paper, which
consists in a new LPV observer-based approach
for this problem, is presented in section 3. An
extension to continuous-time systems is given in
section 4. In order to demonstrate the validity
of our approach two numerical examples are pre-
sented in section 5. We end this paper by the
conclusion.

Notations : The notation (?) is used for the blocks
induced by symmetry.

2. PROBLEM FORMULATION

Consider the class of chaotic systems described by
the following nonlinear state equations:

{

x(k + 1) = Ax(k) + f(x(k), y(k), k)
y(k) = Cx(k)

(1)

where x(k) ∈ R
n is the state vector and y(k) ∈ R

is the scalar output signal. A and C are constant
matrices of appropriate dimensions and f : R

n ×

R × R+ 7→ R
n is a nonlinear function. The pair

(A, C) is assumed to be detectable.

Given the chaotic drive-system (1), the chaos syn-
chronization problem consists to find a response-
system (also called a slave-system) whose state
x̂(k) converges towards the drive-system state
x(k) using the transmitted signal y(k). This prin-
ciple was graphically represented in Figure 1.

response−systemdrive−system

Chaotic Chaoticy(k)

Fig. 1. Chaos synchronization.

In the following, we investigate the synchroniza-
tion problem by using an observer-based ap-
proach.

3. MAIN RESULT

In this section, we present the main contribution
of our paper which consists in a new framework for
the chaos synchronization problem. This frame-
work is based on reformulating the chaotic sys-
tems as an LPV one. This can be done under
some nonrestrictive assumptions. In the rest of the
paper, we make the following assumptions :

A1: For a particular choice of the output matrix
C, the nonlinear part can be rewritten as:

f(x(k), y(k), k) = g1(y(k), k)Hx(k)

+ g2(y(k), k) (2)

where H ∈ R
n×n, g1 : R × R+ 7→ R and

g2 : R × R+ 7→ R
n. Note that this particular

choice of C is not restrictive. In fact, the class
of systems satisfying the condition (2) includes
an extensive variety of chaotic systems such
as the discrete-time version of the Rössler’s
and Lorenz’s systems presented in Liao and
Huang (1999). In addition to those systems, we
mention several other chaotic systems such as
Chen’s equation presented in Agiza and Yassen
(2001) and Henon map given in De Angeli et al.
(1995).

A2: We suppose that the function g1(y(k), k)
is bounded when y(k) is bounded. Note that
this assumption is not restrictive because the
state vector x(k) and the transmitted signal
y(k) of a chaotic system are always bounded.
This implies that the function f(x(k), y(k), k)
and implicitly the functions g1(y(k), k) and
g2(y(k), k) are bounded when y(k) is bounded.

Now, we introduce the following notations:

ρ(k) = g1(y(k), k) and (3a)

A(ρ(k)) = A + ρ(k)H. (3b)

Using the relation (2) and the notations (3), the
system (1) can be rewritten as:

{

x(k + 1) = A(ρ(k))x(k) + g2(y(k), k)
y(k) = Cx(k)

(4)

Using the output measurement, we can compute
ρ(k) at any instant k. Hence, ρ(k) can be con-
sidered as a known time-varying parameter and
the system (4) can be seen as a linear parameter-
varying (LPV) system with a nonlinear term.

A state observer corresponding to (4) is given by:






x̂(k + 1) = A(ρ(k))x̂(k) + g2(y(k), k)+
+ L(ρ(k))(y(k) − ŷ(k))

ŷ(k) = Cx̂(k)
(5)

where x̂(k) denotes the estimate of the state x(k).
The synchronization problem is reduced to finding
a gain L(ρ(k)) such that the synchronization error

e(k) = x(k) − x̂(k) (6)



converges asymptotically towards zero. The dy-
namic of this synchronization error is given by:

e(k + 1) = (A(ρ(k)) − L(ρ(k))C)e(k). (7)

Note that the estimation error equation (7) defines
an LPV system. Hence, the LPV techniques can
successfully be used in order to study the stability
of this equation and to synthesize our observer.
Next, we give the observer synthesis procedure
by using the LPV approach. Note that these
developments are standard for a well advised
reader on LPV techniques. For clarity, however,
we choose to present them in detail.

As the drive-system state matrix A(ρ(k)) is affine
in ρ(k), we can choose a gain L(ρ(k)) which is also
affine in ρ(k) (see Bara (2001)). Then, we have

L(ρ(k)) = L0 + ρ(k)L1

where L0, L1 are constant matrices to be deter-
mined such that the synchronization error con-
verges asymptotically and exponentially towards
zero.

¿From the assumption A2 and the definition
of ρ(k), we deduce that the parameter ρ(k) is
bounded. Then, we introduce the notations

ρ = min
k

(ρ(k)), ρ = max
k

(ρ(k)), (8)

A = A(ρ) and A = A(ρ). (9)

We present in the following theorem a sufficient
condition for the observer synthesis.

Theorem 1. The synchronization error (7) con-
verges exponentially towards zero if there exist
a symmetric matrix P > 0 and matrices R0, R1

of appropriate dimensions such that the following
linear matrix inequalities (LMI) are feasible:

[

−P
(

AT P − CT R0 − ρCT R1

)

(?) −P

]

< 0 (10)

[

−P
(

A
T

P − CT R0 − ρCT R1

)

(?) −P

]

< 0. (11)

When these LMIs are feasible, the gain matrices
L0, L1 are respectively given by P−1RT

0 and
P−1RT

1 .

PROOF. Consider the quadratic Lyapunov func-
tion

V (k) = V (e(k)) = eT (k)Pe(k).

The variation of this Lyapunov function is:

∆V = V (k + 1) − V (k) =

eT (k)[
(

A(ρ)−L(ρ)C)T P (A(ρ)−L(ρ)C
)

−P ]e(k).

The time dependence of ρ(k) will be omitted
in the following for simplicity. According to the

Lyapunov stability theory, the error (7) converges
exponentially towards zero if:

• the function V (k) is positive definite and
• ∆V is negative definite

for all e(k) 6= 0 and all possible trajectories ρ(k).
These conditions are satisfied if and only if P > 0
and

(

A(ρ) − L(ρ)C)T P (A(ρ) − L(ρ)C
)

− P < 0

for all ρ(k) ∈ [ρ, ρ]

which are equivalent, by Schur complement, to
[

−P
(

A(ρ) − L(ρ)C
)T

P
P

(

A(ρ) − L(ρ)C
)

−P

]

< 0

for all ρ(k) ∈ [ρ, ρ]. (12)

The parameter dependence of the inequality (12)
implies an infinite number of inequalities to sat-
isfy. In order to reduce this infinite number to
a finite one, we apply the convexity principle.
Then, as (12) is affine according to the parameter
ρ(k), the inequality (12) is satisfied for all possible
trajectories ρ(k) ∈ [ρ, ρ] if it is satisfied on the

vertices of [ρ, ρ]. Using the notations PL0 = RT
0

and PL1 = RT
1 , this condition yields to the in-

equality conditions (10) and (11). As P > 0 then
P is invertible and we can compute the gains L0

and L1 as, respectively, P−1RT
0 and P−1RT

1 .

Remark 2. This approach can be also extended to
a vector-valued output signal.

Remark 3. The LMI conditions of Theorem 1
are feasible for a large class of chaotic systems.
However, if these LMIs are not feasible, we can
use less restrictive synthesis conditions based on
the existence of a parameter-dependent Lyapunov
function P (ρ). The interested reader can see the
works presented by Bara et al. (2001); Bara (2001)
for more details on the synthesis of parameter-
dependent observers for LPV systems using the
parameter-dependent quadratic stability concept.

In the next section, we give an extension of this re-
sult to the continuous-time chaos synchronization
problem.

4. EXTENSION TO THE
CONTINUOUS-TIME CASE

Consider the continuous-time chaotic system de-
scribed by:

{

ẋ(t) = Ax(t) + f(x(t), y(t), t)
y(t) = Cx(t)

(13)

where x(t) ∈ R
n is the state vector and y(t) ∈ R

is the scalar output signal. A and C are constant
matrices of appropriate dimensions and f : R

n ×



R × R+ 7→ R
n is a nonlinear function. The pair

(A, C) is assumed to be detectable.

As in the previous section, we assume that the
nonlinear part of system (13) can be rewritten as:

f(x(t), y(t), t) = g1(y(t), t)Hx(t) + g2(y(t), t)
(14)

where H ∈ R
n×n, g2 : R × R+ 7→ R

n and
g1 : R × R+ 7→ R are bounded when y(t) is
bounded. As explained in the previous section,
this implies that the parameter ρ(t) is bounded.
Then, we introduce the notations:

ρ = min
t

(ρ(t)), ρ = max
t

(ρ(t)),

A = A(ρ) and A = A(ρ).

By analogy with the discrete-time case, the
chaotic response-system is described by the fol-
lowing equations:







˙̂x(t) = A(ρ(t))x̂(t) + g2(y(t), t)+
L(ρ(t))(y(t) − ŷ(t))

ŷ(t) = Cx̂(t)
(15)

where x̂(t) denotes the estimate of the state x(t),
ρ(t) = g1(y(t), t) and A(ρ(t)) = A + ρ(t)H .

The dynamic of the synchronization error is given
by:

ė(t) = (A(ρ(t)) − L(ρ(t))C)e(t). (16)

When L(ρ(t)) = L0 + ρ(t)L1, the synthesis prob-
lem consists of finding the gains L0 and L1 such
that the synchronization error (16) converges ex-
ponentially towards zero. The following theorem
presents sufficient conditions which allow to com-
pute these gains.

Theorem 4. The synchronization error (16) con-
verges exponentially towards zero if there exist a
symmetric matrix P > 0 and matrices R0, R1

of appropriate dimensions such that the following
LMIs are feasible:

AT P − CT R0 − ρCT R1 + PA− RT

0 C

− ρRT

1 C < 0 (17)

A
T

P − CT R0 − ρCT R1 + PA− RT

0 C

− ρRT

1 C < 0. (18)

When these LMIs admit a solution, the gain
matrices L0 and L1 are respectively given by
P−1RT

0 and P−1RT
1 .

PROOF. To study the stability of the synchro-
nization error, we consider the quadratic Lya-
punov function V (e(t)) = eT (t)Pe(t) where P
is a symmetric matrix. The synchronization error
(16) converges asymptotically and exponentially
towards zero if:

V (e(t)) > 0 and (19a)

V̇ (t) < 0 (19b)

for all e(t) 6= 0 and all trajectories ρ(t). The time
dependence of ρ(t) will be omitted for simplicity.
Note that

V̇ (t) = eT (t)F (ρ)e(t) where

F (ρ) = (A(ρ)−L(ρ)C)T P + P (A(ρ)−L(ρ)C).

The condition (19a) implies that the matrix P
must be positive-definite and from the condition
(19b) we deduce that F (ρ) must be negative-
definite for all parameter trajectories. Note that
the matrix function F (ρ) is affine in ρ. Using the
convexity principle, V̇ is negative-definite for all
possible trajectories ρ ∈ [ρ, ρ] if F (ρ) is negative
definite on the vertices of [ρ, ρ]. Hence, using the

notations R0 = LT
0 P and R1 = LT

1 P , this yields to
the inequality conditions (17) and (18). As P > 0
then P is invertible and we can compute the gains
L0 and L1 as, respectively, P−1RT

0 and P−1RT
1 .

Remark 5. The synchronization of Rössler sys-
tems has been studied by Peng et al. (1996);
Grassi and Mascolo (1997). In these papers, no
synchronization has been observed whenever the
transmitted signal is a state variable of the drive-
system. This drawback is eliminated by our ap-
proach. In fact, using our approach, the global
synchronization can be obtained easily whenever
the driving signal is the first component of the
state vector y(t) = x1(t) or the third one y(t) =
x3(t), as shown in Example 2.

5. EXAMPLES

In this section, we apply our approach to the syn-
chronization problem of two chaotic systems taken
from the literature. The first one presents the
Lorenz chaotic model in discrete time version as
given by Boutayeb (2005). The second example is
the Rössler chaotic model previously investigated
by Wang and Wang (1998); Grassi and Mascolo
(1997).

Example 1. Consider the discrete-time version of
the Lorenz chaotic system. This discrete-time ver-
sion is obtained by using the Euler discretization
method with a sampling period of T = 0.01. The
system is described by:

A =





1 − 10T 10T 0
28T 1 − T 0
0 0 1 − 8/3T



, C =
[

1 0 0
]

and f(x(k), y(k), k) = T





0
−x3(k)x1(k)
x2(k)x1(k)
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(a) Phase plot.

0 100 200 300 400 500 600 700 800 900 1000
−25

−20

−15

−10

−5

0

5

10

15

20

Time(k)

M
ag

ni
tu

de

(b) The scalar signal ρ(k).

Fig. 2. The Lorentz chaotic system.

The chaotic behavior of this system is presented
in the phase plot of Figure 2(a), with initial

conditions x(0) =
[

−2 2 0.1
]T

.

We can rewrite this system as in (4) with A(ρ(k))

defined by (3b) where H = T





0 0 0
0 0 −1
0 1 0



,

ρ(k) = g1(y(k)) = y(k) and g2(y(k), k) =
[

0 0 0
]T

. The Figure 2(b) shows the evolution
of the parameter ρ(k) which is identical to the
system output. From this figure we can see that
ρ(k) is bounded and we have ρ = −25 and ρ = 19.
Using Theorem 1, we can compute the following
gain matrices for the slave-system:

L0 =
[

0.9609 0.9077 0.0106
]T

and

L1 =
[

0.0001 −0.0001 0.0064
]T

.

The dynamic of the synchronization error is shown
on the Figure 3.

Example 2. Consider the continuous-time Rössler
chaotic model described by the following set:

A =





0 −1 −1
1 a 0
0 0 −c



, C =
[

0 0 1
]
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Fig. 3. The synchronization error e(k).

and f(x(t), y(t), t) =
[

0 0 x1(t)x3(t) + b
]T

with

a = 0.398, b = 2, c = 4 and x =
[

x1 x2 x3

]T
.

The matrix C allows us to rewrite this system as

in (4) with H =





0 0 0
0 0 0
1 0 0



, ρ(t) = g1(y(t)) = y(t),

and g2(y(t), t) =
[

0 0 b
]T

. The evolution of the
parameter ρ(k) is shown on Figure 4(b). We have
ρ = 0.25 and ρ = 5.8.

The implementation of the LMI conditions of
Theorem 4 gives the following gain matrices:

L0 =
[

−8.5867 8.809 −5.3032
]T

and

L1 =
[

95.0233 −65.0105 20.1112
]T

.

The behavior of the synchronization error for this
example is illustrated in Figure 5.

We can also measure the first state component i.e.

choose the output matrix C =
[

1 0 0
]

, and apply
our approach in order to construct an observer-
based synchronization scheme. The gain matrices
computed using Theorem 4 are

L0 =
[

3.1482 −4.7058 −4.0962
]T

and

L1 =
[

0 0 1
]T

.

6. CONCLUSION

In this paper, a new framework for the synchro-
nization of chaotic systems was presented. We
have shown that for a particular transmitted sig-
nal, the synchronization problem of a large class
of chaotic systems can be reformulated as an ob-
server synthesis problem for an appropriate LPV
system. Our work shows that LPV techniques
can be used successfully in the context of chaos
synchronization.
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