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INTRODUCTION 

Repetitive or multipass processes play important role 
in industry. We say that the process is repetitive if 
the same action is repeated many times and the time 
interval of this action is constant and finite. The 
process can be illustrated by considering machining 
operations where the material or workpiece involved 
is processed by a sequence of passes of the process-
ing tool. Classical examples of repetitive process are 
coal miner in strip mine or metal rolling operations 
(Rogers and Owens, 1992). Other examples one can 
find in paper and steel industry, agriculture, etc.  

We will deal with the problem of calculation of dis-
crete-time model for continuous-time linear repeti-
tive system. In the literature one can find references 
to the so-called single step, trapezoidal and single 
step higher order discretization methods for calcula-
tion of the model, see for instance (Gałkowski et al., 
1999; Gałkowski, 2000; Gramacki, 2000). There are 
also some references to calculation of discrete-time 
model for continuous-time 2-D Roesser system with 
application of step-wise approximation of state sig-
nal (Chen et. all., 1999). In this note we present an 
exact calculation of the discrete-time model under 
assumption of the step-wise and trapezoidal-wise 
approximation of the input signals to the differential 
state equation of the system. The model is easy for 
calculation and seems to be better than the other 

known models. We will also discuss stability prob-
lem of the calculated model. 

PROBLEM FORMULATION 

Mathematical model of continuous-time repetitive 
process can be given by the following equation 
(Rogers and Owens, 1992) 
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where x∈Rn is a state vector, u∈Rm is an input signal, 
y∈Rp is an output signal and l denotes a repetition; 
Ac, Bc, Ec, Cc, Dc, Fc are real matrices of appropriate 
dimensions. It is assumed that every repetition is 
carried out in finite constant time t∈[0,T]. Initial 
conditions for the system are as follows 
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The problem can be now formulated the following 
way: given repetitive process (1), find discrete-time 
model for the system in the form 

 
)()()()(
)()()()1(

111

111

kFykDukCxky
kEykBukAxkx

llll

llll

++=
++=+

+++

+++  (3) 

It is expected that model (3) will have the same 
properties as system (1), e.g. concerning system 
stability. Moreover, we are interested to find a model 



 

that retains system properties with bigger sampling 
time. This model will be more useful in engineering 
applications. 

STEP-WISE APPROXIMATION MODEL 

It is well known that solution x to equation (1) has 
the following form 
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For calculation of the integrals one can assume that 
signals u and y can be approximated by step-wise 
functions: u(t+τ)=u(t) and y(t+τ)=y(t) for τ∈[0,T). 
This model we will call DSS (Direct-Step-Step). 

Then, one obtains from (4) 
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Thus, assuming that Tp denotes sampling time, the 
discrete-time model (3) has the following matrices 
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For comparison, assuming that integral of state x can 
be approximated by trapezoid one obtains the follow-
ing matrices for model (3) (Gramacki, 2000) 
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This model we will call TSS (Trapezoidal-Step-
Step). 

STEP-WISE AND RAMP-WISE  
APPROXIMATION MODEL 

For calculation of the first integral in (4) one can 
assume that input signal u can be approximated by 
step-wise function as above. This approximation is 
exact in the case when computer generates control 
input signal. Unfortunately, this approximation is not 
appropriate for calculation of the second integral, yk 
is not a step-wise signal since it is output of the con-
tinuous-time system from previous operation. There-
fore, we propose ramp-wise approximation for signal 
yl(k+τ), τ∈[0,Τ), in the second integral in (4), namely 

T
tyTtytyty llll

ττ )]()([)()( −++=+  for τ∈[0,T). 

This model we will call DST (Direct-Step-
Trapezoidal). 

Then, one obtains from (4) 
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Calculating the third integral one gets 
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Henceforth, one can present (7) in the following 
form 
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Next, using the series expansion of the eAt one ob-
tains 
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Hence, we have from (8)  

 
)(

)()()()( 111

TtyE

tyEtuBtxATtx

lT

llll

++

++=+ +++
(

(((

 (9) 

where 

221

221
~~~~

~~~~,~,~

EEEEE

EEEEEBBeAA

T

TAc

−=−=

=+−====
(

(((

 

Let T=Tp where Tp is a sampling time and t=kTp. 
Based on the above one can write the following dis-
crete-time model for system (1) 
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Next, introducing the new vector χ as follows 
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one obtains from (10) a discrete-time model for sys-
tem (1) 
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Based on (2) one easily finds initial conditions for 
this system  
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Considering stability of system (12) along the repeti-
tions we find that the system is asymptotically stable 
if and only if all eigenvalues of F are inside the unit 
circle, e.g. (Kurek and Zaremba, 1993). From series 
expansion of eAt one has 
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Thus, it follows from (12) and the above that eigen-
values of matrix F depend on Tp and Ec. However, 
for Tp→0 we have TE

)
→0 and F→Fc. Thus, the 

discrete time model retains stability properties of 
continuous time system for small enough sampling 
time Tp, i.e. placement of eigenvalues of F is similar 
to the placement of eigenvalues of Fc. System dy-
namics along the time is properly modeled. 

Summarizing, in order to obtain proper model the 
sampling time Tp for the system should be chosen in 
such a way that: 

1. Matrix F has to have eigenvalues in the same 
region as matrix Fc, i.e. inside or outside the unit 
circle in order to retain stability properties of the 
continuous-time system (1). 

2. System dynamics along the time is properly 
modeled; according to the practical suggestions 
one should presume for asymptotically stable 
processes Tp ≤ T95/6, where T95 is a setting time 
of the 95% step response, e.g. (Iserman, 1989). 

For trapezoidal approximation of integrals of state x 
and output y, and step-wise approximation of integral 

of input u in (1) one obtains the following matrices 
for model (3), (Kurek, 1995): 
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The model we call TST (Trapezoidal-Step-
Trapezoidal). Clearly, for Tp→0 we have F→Fc, too. 

RAMP-WISE APPROXIMATION MODEL 

The proposed model (12) is appropriate for modeling 
of control system where u is a step-wise control 
signal, e.g. computer generated control input. How-
ever, in the case of a system where u is a continuous-
time signal it could be suitable to calculate the first 
integral in (4) using ramp-wise approximation: 
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This model we will denote as DTT (Direct-
Trapezoidal-Trapezoidal). Then, one obtains simi-
larly to (7) 
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Next, similarly to (8) we have 
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Finally, we have form similar to (9) 
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Then, for T=Tp one obtains 
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Using notation similar to (11) 
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one obtains from (15) the following discrete-time 
model for system (1) 
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Based on (2) one easily finds initial conditions for 
this system  
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Using trapezoidal approximation of integrals of state 
x, input u and output y in (1) one obtains the follow-
ing matrices for TTT (Trapezoidal-Trapezoidal-
Trapezoidal) model (2), similar to (14) 
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NUMERICAL EXAMPLES 

Consider the first order repetitive process given in 
(Gałkowski, 2000) for t∈[0,2] (Process 7) 
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Initial conditions and control input to the system 
were as follows 

xl+1(0)=0   for   l=0,1,...,  y0(t)=0   for   t∈[0,2]    

and 
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It is easy to note that the system is asymptotically 
stable in the time and repetition domains and its 
setting time T95≅6 in time domain. Thus, in order to 
obtain well-defined model of the process along time t 
one should assume Tp≤1. However, for Tp=1 we have 
F=1.0804 for DTT model (16). Thus, the discrete-
time model is unstable and one should assume 
smaller sampling time. Note, that TTT model (18) is 
also unstable in this case, one obtains then F=1.1.  

The system is also unstable for sampling time 
Tp=0.5. However, for Tp=0.4 we have the following 
matrices of the discrete-time model DTT (16) and 
TTT (18), respectively 

A=0.8187,  B=0.3308,  E=0.1752,   

C=1,  D=0,  F=0.9876 

and 

A=0.8182,  B=0.3636,  E=0.1818,   

C=0.9091,  D=0.1818,  F=0.9909 

In fig. 1 there are presented output of the real system 
(Tp=0.001) and DTT and TTT models with Tp=0.4. It 
is easy to see that both models are stable, but outputs 
calculated using the models are unacceptable, they 
are too big. However, output of the DTT model is 
significantly smaller. 
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Fig. 1. Output in time t=2 versus repetitions l of the 
proposed DTT model (16) and TTT model (18) with 
sampling times Tp=0.001 and Tp=0.4 for system (19). 

Next we have calculated models DST (12) and TST 
(14) with Tp=0.2 for the system receiving the follow-
ing matrices 



 

A= 0.9048,  B= 0.1903,  E= 0.0907,   

C=1,  D= 0,  F= 0.9468 

and, respectively 

A= 0.9048,  B= 0.2000,  E= 0.0952,   

C= 0.9524,  D= 0,  F= 0.9476 

In fig. 2 and 3 there are presented graphs similar to 
the ones given in (Gałkowski, 2000). We see that 
DTT and TTT models generate almost exact outputs 
of the system. They are much better then the output 
calculated by method proposed in (Gałkowski, 
2000), compare fig. 3 with fig. 4 and 7 presented in 
(Gałkowski, 2000). Models DST and TST give very 
similar outputs but much worse then DTT or TTT 
models. In general, it is clear that the difference 
depends if nature of the input signal to the model 
state equation is properly recognized and taken into 
account. If the signal is different than step-wise then 
for larger sampling period we get worse results using 
step approximation than trapezoidal approximation. 
The same problem occurs when one uses trapezoidal 
approximation for step-wise signal. The difference 
should be made at the stage when the model is cho-
sen. Of course, if the sampling time is small enough 
there is no difference. This can be seen in fig. 4 
where continuous line in the middle refers to the 
output of the real system.  
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Fig. 2. Output in the 10th repetition of the proposed 

DST model (12) and TST model (14) with 
sampling times Tp=0.001 and Tp=0.2 for system 
(19). 
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Fig. 3. Output in the 10th repetition of the proposed 

DTT model (16) and TTT model (18) with 
sampling times Tp=0.001 and Tp=0.2 for system 
(20). 
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Fig. 4. Output in time t=2 versus repetitions l of the 

proposed DTT model (16) and TTT model (18) 
with sampling times Tp=0.001 and Tp=0.2 for 
system (20). 

Now consider the following first order repetitive 
process (Process 4) given in (Gramacki, 2000) 
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Initial conditions for the system were as follows 

xl+1(0)=0   for   l=0,1,...  and  y0(t)=1  for  t∈[0,2] 

One easily finds that the system is asymptotically 
stable in the time and repetition domains and its 
setting time T95≅0.1834. As previously mentioned, in 
order to obtain well-defined model of the process 
along time t, one should assume Tp≤0.03. However, 
it is interesting to note that for greater Tp=0.1 we 
have DST model (12) stable but TST model (14) 
unstable. In the latter case we obtain F=1.0804.  

For Tp=0.03 we have the following matrices of the 
discrete-time model DST (12) and TST (14) 

A= 0.6121,  E= 0.1771,  C=1,  F= 0.8990 

and, respectively 

A= 0.6059,  E= 0.2190,  C= 0.8030,  F= 0.9095 

In fig. 5 we see that for larger sampling time that is a 
great difference between the same approximation of 
the input but different approximation of the state 
vector, trapezoidal and exact solution, TST and DST 
models. Continuous line refers to the real output of 
the system (Tp=0.001). From fig. 6 one finds that for 
small sampling time one gets the same output of the 
system independent on the approximation of the 
input signals to state equation. However, we note 
that using step approximation of the system output 
instead of trapezoidal one we have to increase calcu-
lation effort more than 10 times, the sampling time 
for DSS model should be 10 times smaller than for 
DST model for the system in order to obtain similar 
simulation results. 
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Fig. 5. Output in time t=0.3 versus repetitions l of the 

proposed DST model (12) and TST model (14) 
with sampling times Tp=0.001 and Tp=0.03 for 
repetitive process (20). 
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Fig. 6. Output in time t=0.3 versus repetitions l of the 

proposed DTT model (16) and TTT model (18) 
with sampling times Tp=0.001 and Tp=0.0001 for 
repetitive process (20). 

CONCLUDING REMARKS 

New method for calculation of discrete-time model 
for continuous-time repetitive processes is presented. 
Proposed model could be useful for computer simu-
lation of repetitive processes. It has some advantages 
comparing with other models. This is illustrated by 
numerical examples of calculation of simple repeti-
tive processes. Note, that one has to take into account 
the knowledge about the input signals to the repeti-
tive system state equation, i.e. if it is a step-wise 
signal or not. 

The proposed model usually enables ones to calcu-
late discrete-time model with sampling time larger 
than using other methods. However, it should be 
noted, that since there is a change of matrix F in 
discrete-time model it can affect stability of the 
process along passes. In this case one should choose 
smaller sampling time in order to preserve stability 
of the repetition process. A simple suggestion for the 
choice of sampling time is given. 
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