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Abstract: This paper is dedicated to stability analysis of a position control loop
based on an induction motor with flux oriented control in the general framework
of µ-analysis. The pertinence of using this methodology is discussed in the
general case of a smooth nonlinear system when the equilibrium point varies
slowly. A new linear fractional representation of the model is presented with low
repetition indexes of the parameters. Several algorithms are used for evaluating
µ bounds, allowing to compare them in term of accuracy and computation time.
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1. INTRODUCTION

Induction motor is a widely used actuator. Its
most classical torque control strategy, called flux
oriented control (FOC) requires the knowledge of
the rotor parameters for tuning. If they are not
well known, the torque cannot be well handled
and parasitic dynamics appear that can affect an
outer loop, such as a speed or position loop, and
turn the system unstable. It then appears neces-
sary to check the robustness of the system with
respect to the variations of those parameters. This
problem was observed in (Semail et al., 1990). In
(de Wit P.A.S. et al., 1996), it is shown that FOC
remains stable for large variations of the param-
eters. In (Cauët et al., 2002), robustness analysis
is performed via parameter-dependent Lyapunov
functions and applied to the case of feedback
linearization control. In (Laroche et al., 2004) a
linear fractional model was presented for evaluat-
ing robustness of an induction motor with FOC
including a flexible link and µ-analysis results

were provided. It included parameter variations
of both motor and load. Nevertheless, the de-
velopment of the linear fractional representation
(LFR) was simplified as only one parameter was
finally considered for the motor. Herein, this last
approach is reconsidered. An improved model is
developed including all the varying parameters.
Several algorithms available in the literature are
considered for evaluating the robustness margin,
allowing to compare their efficiencies. Moreover,
a general methodology is exhibited, which gen-
eralizes the considered case. Indeed, we discuss
the use of µ-analysis for robustness analysis of
smooth nonlinear systems in the particular case
where nonlinear dynamics are inside an inner loop
and can be considered as fast with respect to the
outer loop.

A short description of the process in given in
section 2. The general methodology is then dis-
cussed in section 3. The LFR model used for the
robustness analysis is developed in section 4. The



considered algorithms and numerical results are
finally presented in section 5.

2. DESCRIPTION OF THE SYSTEM

The system considered herein is composed of an
induction motor linked to an inertial load via a
flexible link. The motor is torque controlled via
the FOC algorithm and an outer loop is designed
for position control. A brief presentation of the
system follows. The reader may refer to (Laroche
et al., 2004) for complementary information.

2.1 Electromechanical system

The 3-phase induction motor is of 2.2 kW rated
power and its voltage wave-forms are delivered by
a voltage inverter. The motor is connected to a
fixed inertial load by the mean of a flexible link.
The dynamical model of the induction motor is
well-known and can be found in the literature
(Vas, 1990; Leonard, 1996).

2.2 Flux oriented control

Flux-oriented control is the most classical torque
control strategy. It consists in choosing a change
of frame so that the torque expressions simplifies
into T = PLmimisq, where P is the pole pair
number, Lm is the magnetizing inductance, im
is the magnetizing current and isq is the torque
component of the stator current. Finally, FOC
consists first in computing estimates îsq of isq and

îm of im; second in controlling îm at its nominal
value and îsq in order to impose the desired torque

value T ∗, which is the case with i∗sq =
T∗

PL̂mi∗m
.

This control strategy relies on the knowledge of
rotor parameters: Lm and also the rotor resistance
Rr through the rotor time constant Tr = Lm

Rr
.

When the parameters are known with accuracy,
torque is well controlled and T = T ∗ on a wide
bandwidth (up to 1 kHz). Nevertheless, Lm varies
with respect to magnetic saturation and Rr with
respect to temperature. With estimation errors
on Rr and Lm, the actual torque is not well-
controlled any more. The system of input T ∗ and
output T exhibits 2nd order dynamics.

2.3 H∞ controller

Assuming that the torque is perfectly controlled,
transfer between torque reference T ∗ and the
position was identified from experimental data.
The position control loop is finally defined by
T ∗ = K(s)(θ∗−θ), where K(s) is a H∞ controller
designed by loop-shaping (McFarlane and Glover,
1992).

2.4 Robustness issue

The H∞ controller was designed for the nominal
model and does assume that the torque is well-
handled. In the case where rotor parameters vary,
the parasitic dynamics of the torque modify the
behavior of the loop that may become unstable.
Checking whether the system remains stable for
some parameter variation ranges appears to be
crucial.

3. METHODOLOGY

3.1 Stability

Let us consider a controlled nonlinear system
of reference signal r, output vector y and state
model:

ẋ = f(x, r, p) (1)

where p is the parameter vector, f being con-
tinuously derivable. For a given constant input r
and a given parameter vector p, an equilibrium
point x0 is defined by the implicit relationship
f(x0, r, p) = 0. This equilibrium is stable if the
Jacobian matrix:

A(x0, r, p) =
∂f

∂x
(x0, r, p) (2)

is Hurwitz, i.e. if all its eigen values have strictly
negative real parts. The system can be considered
as locally stable if all the equilibrium points are
stable, i.e. for any constant r in the admissible set.

Some remarks can be done concerning this defini-
tion of stability:

• Stability is guaranteed only for x being in a
neighborhood of x0.

• There is no guaranty that the regulation
error r − y is bounded for any trajectory.

In order to avoid these limitation, one may want
to check that the Jacobian matrix:

A(x, r, p) =
∂f

∂x
(x, r, p) (3)

is Hurwitz for any (x, r, p) of the admissible tra-
jectories. In this case, stability is guaranteed in
the case of low variations of the working point,
namely of r. As the trajectory is generally not
known in advance and as parameters are uncer-
tain, trajectory of x is considered as uncertain and
the Hurwitz criterion has to be checked for any x
in a domain determined by simulation. Actually,
matrix A generally depends on a limited number
of entries of x0 and r. These entries are considered
as additive parameters included in an extended
parameter vector p̃. This formulation may be pes-
simistic as variations of x0 and r are considered
as independent and the number of uncertain pa-
rameters is increased.



Nominal stability refers to the stability with the
nominal value p∗ of the parameter vector. Stability
robustness is insured if the system remains stable
for any value of p in the admissible domain. The
robustness margin is the dilatation ratio that can
be applied to the considered parameter domain
while preserving stability. Thus, the system is
robustly stable if the robustness margin is greater
than one.

3.2 µ-analysis

If the linearized model ẋ = A(p̃)x is rational
in p̃, a linear fractional representation can be
obtained. It consists in a loop including a LTI
model M(s) closed with a static transfer ∆(p̃).
The parameter variation can be normalized so
that ||∆(δ)||∞ ≤ 1 where δ is the normalized
parameter vector. Assuming that p̃ (and then δ)
is constant, stability robustness can be evaluated
with the classical µ-analysis method. 1

µ
is then the

size of the smaller ∆ capable to turn the system
unstable and is therefore the robustness margin.

µ-analysis has turned out to be a classical frame-
work for robustness analysis of linear and smooth
non-linear systems. It has been mainly applied
to aeronautical and space applications (Döll et
al., 1998; Döll et al., 1999) and also to other
industrial systems (Laroche and Knittel, 2005).

3.3 Two-loops controlled system

Let us consider that the controlled system in-
cludes two loops:

• An inner loop controlling internal quantities
that need to be limited; it has fast dynamics
and is generally robust when used alone.

• An outer loop, with lower dynamics, forces
the system output y to follow a desired refer-
ence trajectory r. The outer loop controller
K(s) is assumed to be linear.

The outer-loop controller is generally designed
based on the nominal model of the inner loop.
Nevertheless, uncertainties on the system may
yield instability in the outer loop.

This situation is classical in electric engineering
where an inner loop controls the torque (and the
currents) of the electric motor whereas an outer
loop controls the speed or position, which is the
present case. It is also classical in robotics where
an inner loop generally controls the joint speeds
whereas an outer loop controls the end-effector
position.

In this control scheme, the setting point depends
on the outer-loop reference signal. If this reference
signal varies slowly with respect to the inner

dynamics, the inner loop can be considered as
being around its equilibrium point. Assuming that
the inner loop model is given by ẋi = fi(xi, u, p)
and y = g(xi, u, p), one can restrict the robustness
evaluation to the equilibrium manifold defined by
the implicit relationship: fi(xi0, u0, p) = 0. The
equilibrium point being given by xi0 = φ(u0, p),
the stability can be studied by considering the
loop including K(s) and the linearized model of
the inner-loop:
{

ẋi = Ai(φ(u0, p), u0, p)x+B(φ(u0, p), u0, p)u
y = C(φ(u0, p), u0, p)x+D(φ(u0, p), u0, p)u

where u0 and p vary in their domains and with
Ai(xi, u, p) =

∂fi

∂xi
, B(xi, u, p) =

∂fi

∂u
, C(xi, u, p) =

∂g
∂xi

and D(xi, u, p) =
∂g
∂u

. The obtained extended
parameter vector p̃ (including the components of
u0 that occur in the linearized model) is usually
far smaller than the one obtained by keeping the
dependence of xi.

In the present case, the position loop can be
considered as relatively slow with respect to the
torque dynamics; the presented methodology is
therefore applied.

4. LINEAR FRACTIONAL
REPRESENTATION

Assuming that the stator currents are perfectly
controlled (̂im = i∗m and T̂ = T ∗), the model of
the induction motor with FOC can be obtained as
in (Laroche et al., 2004):

dξ

dt
=

Rr

Lmim
(−i∗m sin(ξ) +

T ∗ cos(ξ)

PL̂mi∗m
)−

R̂rT
∗

PL̂2mi
∗2
m

dim
dt

=
Rr

Lm
(i∗m cos(ξ) +

T ∗ sin(ξ)

PL̂mi∗m
− im)

T = PLmim(−i∗m sin(ξ) +
T ∗ cos(ξ)

PL̂mi∗m
)

where ξ is the angle error of the frame change.
Following the method presented in section 3, the
model linearized around the equilibrium point can
be determined. This model was presented in the
form of a transfer function in (Nordin et al., 1985).
After rearranging the parameters, it is possible
to consider only 4 varying parameters: 1/Tr, λ =
Lm/L̂m, ζ = Tr/T̂r and ι = (̂isq /̂im)2, instead of

the 5 parameters of the nonlinear model (Lm, L̂m,
Rr, R̂r and i∗m).

As the parameter dependence is rational, the
model can be put into the LFR of figure 1.
This representation is not unique and different
methods can be used, providing representations
with different repetition indexes.

Factorizing the transfer function in order to lower
the parameter repetition indexes, the LFR was



Table 1. Repetition indexes

tf tf red ss ss red

1/s 4 4 2 2

1/Tr 4 4 2 2

λ 1 1 1 1

ζ 10 8 6 5

ι 6 4 3 2

obtained with the LFR toolbox (Magni, 2001).
The repetition indexes obtained by (Le Guennou,
2003) are given in the first column of table 1
(‘tf’ for transfer function). The model is of order
4 in state (instead of initial order 2) and the
highest repetition index is 10. Using the reduction
algorithms available in the mentioned toolbox, the
order was sensibly reduced (column ‘tf red’).

A second way for obtaining the LFR is to use di-
rectly the state space model. Indeed, it is already
a LFR of 1

s
In with matrix:

[

A B
C D

]

, (4)

the repetition index of 1/s being n = 2. The

change of state vector x = [ξ im
(1+ι)(1+ιζ2)√

ι
]T was

first used, then factorization and commutation
of multiplications between scalars; the following
model was finally obtained:

ẋ1 =
1

Tr
(w − x1 − ιζx2), (5)

ẋ2 =
1

Tr
(w + ζx1 − x2), (6)

T =
λ

1 + ιζ2
(−x1 + ιζ(x2 + T ∗) + T ∗), (7)

with w = (1 − ζ)T ∗. The repetition indexes of
the parameters are given in ‘ss’ column (for state-
space) of table 1. One can notice that they are
sensibly decreased; reduction algorithms allowed
to even decrease the repetition indices (column
‘ss red’).

Finally, parameters λ and ζ are replaced by their
expressions depending on Rr and Lm, the varia-
tions of those parameters being independent. The
final model then includes 3 varying parameters;
their variation ranges and repetition indexes are
given in table 2.

Q(s)

∆(p) ¾

--

-

u

v

y

z

Fig. 1. LFR Model

Table 2. Repetition indexes

range index

ι [0, 4] 2

Lm ± 50 % 6

Rr ± 50 % 5

5. COMPUTATION OF µ

Several algorithms available in the literature were
used, allowing to compared their results and com-
putation time. The final model is a LFR composed
of M(s) (including Q(s) and K(s)) and ∆ ∈ E∆;
E∆ being the set of matrices with the partic-
ular structure and ∆ being normalized so that
||∆||∞ ≤ 1 for the largest parameter deviations.

5.1 Upper bound algorithms

5.1.1. Upper bound with frequency grinding.
The classical method for estimating µ is to con-
sider the system in the frequency domain (s = jω)
for a sampled set of frequencies. Finally, µ is
the maximum value of the µ(ω). The interest is
that the complexity of the method is polynomial
with respect to the repetition indexes. The main
drawback is that peaks in the frequency plot may
be underestimated. The most classical algorithm
is due to (Young et al., 1995).

5.1.2. Guaranteed upper bound. Let us consider
the LFR of a LTI system of order n (composed
of (4) and 1

jω
In). Quantity 1

ω
can be considered

as an uncertain parameter varying over some
interval. Including 1

ω
as an additional parameter

in the LFR of M(s), an upper bound of µ(ω)
over the interval can be computed. Thanks to this
method, the high peaks are not underestimated.
The change of variable 1

ω
= 1−z
1+z allows to consider

the whole range [0,∞] with z varying over [−1, 1].

If µ is directly computed for a given interval of
frequencies [ω1, ω2], the robustness is finally eval-
uated over an interval of the same center 12 (ω2 −
ω1) but of size

ω2−ω1
µ∗

where µ∗ is the obtained µ

value. The algorithm used herein is from (Friang
et al., 1998); it adds a tuning parameter with
serial connection to 1

ω
that is tuned iteratively in

order to obtain a value of µ corresponding to the
prescribed interval [ω1, ω2].

5.1.3. Topological separation. Let us consider
the LFR composed of the operators M and ∆
with:

{

z = Mv
v = ∆z

(8)

It is known that the interconnection is stable if
the graph of M and the graph of ∆−1 are disjoint
(Safonov, 1980); the graph of M denoting the set



couples (v, z) verifying y = Mv. From this no-
tion, Iwasaki and Hara have developed conditions
allowing accurate evaluation of the structured sin-
gular value (Iwasaki and Hara, 1998):

µ(M) = inf
γ>0,Θ∈EΘ

{

γ : [γI M ] Θ

[

γI
M∗

]

< 0

}

(9)
They show that the upper bound based on D−G
scaling is obtained with a particular form of Θ and
they obtain a tighter upper bound with:

Θ =

[

R S
S∗ Q

]

: Rii ≤ 0, i = 1, ..., α,

[∆k I] Θ

[

∆T
k

I

]

≤ 0, k = 1, ..., 2α
(10)

where Rii of size ki × ki is the i
th block of R, ki

being the repetition index of the ith parameter
and ∆k are the vertices of E∆.

For a given γ, solving the inequalities is a LMI
feasibility problem. As γ enters nonlinearly in
(9), µ cannot be computed directly. A dichotomy
can be made from an initial interval with the
drawback of increasing the computational cost,
which is already high and varies exponentially
with respect to the number of parameters.

5.2 Lower bound algorithms

5.2.1. Root locus. A simple way to evaluate the
robustness margin is to check the roots of the
system for parameters varying in their domains.
Let us consider the variations of the maximum
real part of the roots with respect to a dilatation
ratio ρ applied to the parameter domain. This
quantity is negative for ρ = 0, as the nominal
model is assumed to be stable. It is non decreasing
and the value of ρ for which it is zero is the
robustness margin. As only a finite subset of the
parameter domain is considered for computing the
roots, a lower bound of µ is therefore obtained.
More details on the use of this method can be
found in (Laroche and Knittel, 2005).

5.2.2. Root migration. An original method con-
sists in looking for the smaller parameter variation
that moves a given pole toward the imaginary axis
(Döll et al., 1998). In a first step, the parame-
ter displacement is chosen in order to minimize
Frobenius norm of ∆, as an analytic expression is
available. In a second step, the H∞ norm of ∆ is
minimized. These steps are processed with several
poles of the systems and the smallest ∆ is finally
chosen.
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Fig. 2. µ plot (plain line: guaranteed with DG
scalings, dashed: DG with Uc, dots: DG with
UC option and DG from LMI control toolbox,
×: top. sep., o: root locus, +: root migration)

5.3 Numerical results

The different methods presented in this section
were used for computing µ. In table 3 are given the
corresponding results. For the different methods
and the options used in the algorithm are given µ
lower or upper bounds, the corresponding angular
frequencies and the CPU times on an Athlon-
1.4 GHz PC. The results are also graphically
summarized in figure 2. Among the lower bound
methods, one can notice that the root migration
method (column 3) is notably faster than the root
locus method (column 2), but it was not able
to find a better lower bound. The worst case is
obtained for the maximum value of Lm and the
minimum value of Rr.

Among the different algorithms based on DG scal-
ings, one can notice that changing the option ‘Uc’
for ‘UC’, in the function of the µ-analysis and
synthesis toolbox allows a slight improvement in
the accuracy (8 %) but with a prohibitive com-
putation time. The methods from the µ-analysis
and synthesis toolbox with option ‘UC’ and the
LMI control toolbox provides similar results with
similar computation time. More interesting is the
use of the guaranty method (‘DG guar.’); the
result is quite accurate and the computation cost
is not increased too much.

The upper bounds were validated with the topo-
logical separation method (last column). Two par-
ticular frequencies were chosen: the one of the
upper bound peak and of the root-locus. In the
present case, no improvement is found over the
other methods, for a higher computational time.

Finally µ is guaranteed to be in interval [1.095,
1.5], which is not very accurate. Simulation of the
nonlinear model with the worst admissible case
obtained from the lower bound (δ2 = 1/µmin =
0.91, δ3 = −1/µmin) were processed. For compar-



Table 3. Numerical results

lower bounds upper bounds

method root locus root mig. DG scal. DG LMI DG guar. top. sep.

options 1000 values meth.=‘imd’ Uc UC 100 pts Uc 4 iter

100 pts 100 pts ωmax/ωmin = 1.5

µ 1.095 0.985 1.40 1.29 1.29 1.47 1.375

ω (rad/s) 1.73 12.1 3.43 3.43 3.51 [3.16, 4.22] 3.4

CPU time (s) 54 4.46 37 2040 8930 64 1020
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Fig. 3. Simulation results: position (plain: worst
case, dashed: nominal case, dots: reference)
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Fig. 4. Simulation results: torque (plain: worst
case, dashed: nominal case)

ison, results of the nominal case are also given.
Angular position are shown in figure 3; the torque
in shown in figure 4. The system appears to
follow the trajectory satisfactorily. Conjecturing
that that the actual value of µ is 1.095, the corre-
sponding admissible variations on Lm and Rr are
± 45 %.
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