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Abstract:
This article presents a parametric approach to the optimal nonlinear control
problem. This contribution is based on reducing the nonlinear optimal control
problem to a sequence of linear time-varying ones and approaching the desired
optimal control by a sequence of linear algebraic equations. This approach provides
a solution which can be obtained in a simpler way than the usual one. Alternative
choices of orthonormal basis for the parametric approach are discussed. Copyright
c©2005 IFAC
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1. INTRODUCTION

In this paper the problem of obtaining an opti-
mal control for a general nonlinear system is ad-
dressed. The classical method of using the Ricatti
equation is replaced by an orthogonal expansion
of both the state and the control law which lead
to a linear algebraic equation for the unknown
coefficients of the control. The extension of this
approach to nonlinear systems is based on the fol-
lowing: first, the reduction of the original nonlin-
ear optimal control problem to a sequence of linear
time-varying ones whose solutions will converge to
the solution of the original problem and secondly,
the expansion of the state and the control of each
of these LTV problems in terms of some orthonor-
mal basis, such that the sequence of resulting
coefficients will converge to the coefficients of the
optimal control for the nonlinear system. This
approach of parametrizing the control and/or the
state, has been widely used by many authors
(Sirisena and Chou, 1981), (Vlassenbroeck, 1988),

(Yen and Nagurka, 1992), (Banks and Tomas-
Rodriguez, 2001), and (Jaddu, 2002) providing
satisfactory results.
Most of these parametrizations were done by using
the Chebyshev polynomials as orthogonal basis to
expand the control and/or state. In this paper,
we also discuss the optimal choice of this basis.
The iteration technique for nonlinear systems has
been introduced previously in (Banks and Tomas-
Rodriguez, 2002) were local and global conver-
gence proofs were provided. This technique has
been applied to different areas of control such as
the design of nonlinear observers (Navarro Her-
nandez et al., 2003), pole-placement for nonlin-
ear systems (Tomas-Rodriguez and Banks, 2004),
repetitive control (Owens et al., 2003), identifica-
tion of parameters (Tomas-Rodriguez and Banks,
2003) and closely related with the ideas presented
here, in general optimal control (Salamci et al.,
2000), (Cymen and Banks, 2004), (Jianhua Zheng
et al., 2005), where the classical nonlinear non-



quadratic optimal control problem was addressed.
The main purpose of this paper is to combine
both ideas i.e; the parametrization of the control
and/or state and the iteration method applied to
a nonlinear system.
The paper structure is as follows: Section 2 recalls
briefly the approximation technique for nonlinear
systems. Section 3 presents the optimal control
problem for the linear time-varying case and the
solution is presented by using an orthonormal
expansion in terms of some generic basis. Section
4 contains a numerical example for the LTV case.
Section 5 addresses the general nonlinear optimal
control problem by combining the iteration tech-
nique and the parametrization method from the
previous sections. Section 6 contains a numerical
example for the general nonlinear system. Section
7 gives the conclusions and suggestions for further
research.

2. THE ITERATION TECHNIQUE

Consider a nonlinear system of the form

ẋ(t) = A[x(t)]x(t)+B[x(t)]u(t), x(0) = x0 (1)

were x(·) ∈ <n, u(·) ∈ <m and the matrices
A(x(·)) and B(x(·)) are of appropriate dimension
and satisfy a mild Lipschitz condition. Then if
x = 0 is an equilibrium point, the system (1) can
be replaced by a sequence of linear time-varying
control systems whose solutions converge to the
solution of the nonlinear system. This is,

ẋ(1)(t) = A[x0]x(1)(t) + B[x0]u(1)(t) (2)

ẋ(2)(t) = A[x(1)(t)]x(2)(t) + B[x(1)]u(2)(t)
...

ẋ(i)(t) = A[x(i−1)(t)]x(i)(t) + B[x(i−1)]u(i)(t)

with initial conditions x(1)(0) = x(2)(0) = · · · =
x(i)(0) = x0 at each iteration.

The sequence of solutions x(i)(t) converges uni-
formly on any compact time interval to the non-
linear solution x(t) (Tomas-Rodriguez and Banks,
2003) and therefore linear control techniques are
applicable to each of the equations defined in (2).

Remark 1. If x = 0 was not an equilibrium point
of (1), it could always be obtained by an appro-
priate coordinate translation, provided the system
had at least one such point.

Remark 2. The first iteration (only) is a LTI
problem since the initial conditions are plugged
into the original system matrix.

3. OPTIMAL CONTROL FOR LTV SYSTEMS
USING ORTHOGONAL EXPANSIONS

Consider the optimal control problem

minJ =
1
2
xT (T )Fx(T ) (3)

+
1
2

∫ T

0

1
2
xT (t)Qx(t) +

1
2
uT (t)Ru(t)dt

subject to the LTV dynamics,

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0

where x(·) ∈ <n, u(·) ∈ <m and the matrices
A(t),B(t) are of appropiate dimensions.

Assuming stabilizability, there is a feasible control
u(t) which makes J finite, so that it must satisfy
∫ T

0

xT (t)Qx(t)dt < ∞,

∫ T

0

uT (t)Ru(t)dt < ∞

and so if Q (and R) are positive definite then x(t)
and u(t) belong to L2[0, T ] in which case we can
expand them in terms of some orthonormal basis
[ei] on the given time interval [0, T ]:

x(t) =
∞∑

i=1

αiei(t), u(t) =
∞∑

i=1

βiei(t)

where αi and βi are vector coefficients of the
corresponding dimensions. The problem here is
to find the unknown coefficients βi such that the
optimal control can be obtained. The solution of
the time-varying system will be of the form

x(t) = Φ(t; 0)x0 +
∫ T

0

Φ(t; s)B(s)u(s)ds (4)

where Φ is the evolution operator (transition ma-
trix) for A(t).

Hence, substituting the expansions of x(t) and
u(t) in (4):

∑

i

αiei(t) = Φ(t; 0)x0

+
∑

i

∫ t

0

Φ(t; s)B(s)βiei(s)ds (5)

Expanding the initial term and the integral term
gives

Φ(t; 0)x0 =
∑

i

γiei(t)

and
∫ t

0

Φ(t; s)B(s)ei(s)ds =
∑

j

φijej(t)

respectively for some coefficients γi depending on
the initial state x0, and for some coefficients φij .



Hence,(5) becomes
∑

i

αiei(t) =
∑

i

γiei(t) +
∑

i

∑

j

φijβiej(t) (6)

and so, equating coefficients leads to an algebraic
equation on the unknown parameters βk ,

αi = γi +
∑

k

φkiβk. (7)

Next, in order to evaluate the cost functional J
in this basis, it is necessary to evaluate the final
term 1

2xT (T )Fx(T ). Since:

x(T ) = Φ(t; 0)x0 +
∑

i

∫ T

0

Φ(T ; s)B(s)βiei(s)ds

= L(x0) +
∑

i

Miβi, (8)

where

L(x0) = Φ(t; 0)x0 (9)

and

Mi =
∫ T

0

Φ(T ; s)B(s)ei(s)ds (10)

The first term of the cost function takes the form

1
2
xT (T )Fx(T ) =

=
1
2
(
LT (x0) +

∑

i

βT
i MT

i

)
F

(
L(x0) +

∑

j

Mjβj

)

=
1
2
LT (x0)FL(x0) +

1
2
(∑

i

βT
i MT

i

)
FL(x0)

+
1
2
LT (x0)F

( ∑

j

Mjβj

)

+
1
2

∑

i

∑

j

βT
i MT

i FMjβj

and the remaining terms of J are just quadratic
forms due to the orthonormality of the basis:

J =
1
2
LT (x0)FL(x0) +

1
2
( ∑

i

βT
i MT

i

)
FL(x0)

+
1
2
LT (x0)F

( ∑

j

Mjβj

)

+
1
2

∑

i

∑

j

βT
i MT

i FMjβj +
1
2

∑

i

αT
i Qαi

+
1
2

∑

i

βT
i Rβi

Now,

1
2

∑

i

αiQαi =

=
1
2

∑

i

(γT
i +

∑

k

βT
k φT

ki)Q(γi +
∑

k

βkφki)

=
1
2

∑

i

γT
i Qγi +

1
2

∑

i

∑

k

βT
k φT

kiQγi

+
1
2

∑

i

∑

l

γT
i Qφliβl +

1
2

∑

i

∑

k

∑

l

βT
k φT

kiQφliβl

Therefore, J can be written as a second order
infinite polynomial in the βi’s

J =
1
2

∑

i

∑

j

βT
i Kijβj +

1
2

∑

i

βT
i Πi

+
1
2

T∑

i

ΠT
i βi + Γ (11)

where

Kij = MT
i FMj +

∑

k

φT
ikQφjk + Rδij , (12)

Πi = MT
i FL(x0) +

∑

k

φT
ikQγk, (13)

Γ =
1
2
LT (x0)FL(x0) +

1
2

∑

i

γT
i Qγi. (14)

From the necessary condition for an optimum,

∂J

∂βi
= 0

is required , so that gives
∑

j

Kijβj + Πi = 0. (15)

For simplicity, assume a scalar control, so that
it can be solved for the infinite vector β =
(β1, β2, · · · )T :

Kβ = −Π → β = −K−1Π

where

K = (Kij), Π = (Π1,Π2, · · · )T

The infinite vector β = (β1, β2, · · · )T is the set of
parameters which generates the optimal control

u(t) =
∞∑

i=1

βiei(t).

The approximation to this optimal control u(t)
can be obtained by truncating the expansions
to finite- dimensional ones. This approach is not
difficult to apply, as the optimal control can
be solved directly by solving a linear algebraic
equation rather than a nonlinear Riccati equation
backwards in time.
In the next section it will be shown how this
method can be applied and computed for a finite



Fig. 1. Optimal Control and controlled states
using Ricatti method

expansion. The optimal control will be obtained
in this way for different choices of orthonormal
basis.

4. NUMERICAL EXAMPLE LTV CASE

Consider the optimal control problem,

J =
1
2
x(tf )T Fx(tf ) +

∫ tf

t0

(xT Qx + uT Ru)ds

with F =




3 0 0
0 3 0
0 0 3


, Q =




2 0 0
0 2 0
0 0 2


 and R = 1,

subject to the linear time-varying constrain

ẋ =




0 t t
3 t 1
5 6 7


x +




1
1
1


u(t)

for some initial conditions x(0) = (1, 1, 1)T and a
final time tf = 2.

method

The task is to find the optimal control u(t) that
makes the state x(t) minimize the given cost
functional J . Solving in the classical way with
the Ricatti equation, the optimal control law can
be observed in figure (1) (′+′ line) as well as the
stabilized states x1(t) and x2(t), (solid lines).

This particular example was solved using two
different orthonormal basis: first by using the well
known fourier orthonormal basis

(1, sint, cost, sin2t, cos2t, ..)

and secondly using Chebyshev polynomials

(1, t, 2t2 − 1, · · · , 2ten−1 − en−2)

In both cases the number of terms in the expan-
sions were chosen to be 30.

Fig. 2. Approximated Optimal Control for differ-
ent choices of basis

basis

By choosing the fourier basis (1, sint, cost, ..) to
expand the control and state, it can be seen in fig-
ure (2), that the approach to the optimal control is
only good at those intermediate points of the time
interval (solid line), converging at both extremes
to the middle value. In the other hand, using the
Chebyshev polynomials as orthonormal basis, it is
easy to see in the same figure (dotted line) how
in this case the convergence towards the Ricatti
optimal control (dash-dotted line) improves in the
sense that the behaviour of this signal at the
extremes of the interval follow the behaviour of
the Ricatti control. This support the idea that the
Chebyshev basis is generally a better choice.

This leads to the interesting question about which
orthonormal basis are better or if there is an
optimal procedure to find such a basis. In future
reports, the authors would like to develop a best
choice of basis ”criteria” and are planing to show
comparative results between the expansions in
terms of different basis.

The next section consists of a generalization of the
contents here presented to the nonlinear optimal
control problem: In this case, bearing in mind
the iteration technique in Section 2, a sequence
of ”i” LTV optimal control problems is gener-
ated such that the orthogonal expansion of the
control u(i)(t) and state x(i)(t) for each of them
can be applied. This will lead to a sequence of
linear algebraic equations whose solutions will be
a sequence of control coefficients β(i)s converging
to the control coefficients of the original nonlinear
optimal control problem.

5. NONLINEAR CASE

Considering the nonlinear optimal control prob-
lem



minJ =
1
2
xT (T )F (x(T ))x(T )

+
1
2

∫ T

0

(1
2
xT (t)Q(x(t))x(t)

+
1
2
uT (t)R(x(t))u(t)

)
dt

subject to the dynamics

ẋ(t) = A(x(t))x(t) + B(x(t))u(t), x(0) = x0.

Introducing the approximating problems

ẋ(i)(t) = A(x(i−1)(t))x(i)(t) + B(x(i−1)(t))u(i)(t),
(16)

being x(i)(0) = x0 the initial conditions and with
the cost functionals

J (i)(u) =
1
2

∫ T

0

(
x(i)T (s)Q(x(i−1)(s))x(i)(s)

+
1
2
u(i)T (s)R(x(i−1)(s))u(s)

)
ds

+
1
2
x(i)T (T )F (x(i−1)(T ))x(i)(T ) (17)

By the theory presented in Section 3, each of these
problems can be expanded in a basis:

x(i)(t) =
∞∑

k=1

α
(i)
k ek(t), u(i)(t) =

∞∑

k=1

β
(i)
k ek(t)

where α(i), β(i) satisfy the equations:

α
(i)
k = γ

(i)
k +

∑

l

φ
(i)
lk βl

where
γ

(i)
k =

〈
Φ(i)(t, 0)x0, ek

〉
(18)

and Φ(i) is the transition matrix of A(x(i−1)(t)).
(Note that in here < ·, · > denotes the usual inner
product in a Hilbet space H.)

The solution is then given, as in the previous
section by:

β = −Limi→∞(K(i))−1Π(i) (19)

where K(i), Π(i) are given by

K(i) =
(
K

(i)
ij

)
, Π(i) =

(
Π(i)

1 , Π(i)
2 , · · ·

)T

.

and

K
(i)
jk = M

(i)T
j FM

(i)
k +

∑

l

φ
(i)T
jl Qφ

(i)
jl + Rδij

Π(i)
j = M

(i)T
j FL(i)(x0) +

∑

l

φ
(i)T
jl Qγ

(i)
l .

So it has been shown how a nonlinear optimal
control problem can be solved by applying an ap-
proximation procedure which replaces the nonlin-
ear problem by a sequence of linear, time varying
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Fig. 3. Optimal Control at different iterations

quadratic optimization problems. Each of these
problems can be solved efficiently by expanding
the state and control functions in terms of a basis
of L2, the coefficients of which lead directly to a
simple discrete quadratic optimization problem.

6. NUMERICAL EXAMPLE FOR
NONLINEAR CASE

Consider the nonlinear optimal control problem,

minJ =
1
2
xT (tf )Fx(tf )

+
1
2

∫ tf

0

(1
2
xT (t)Q(x(t))x(t)

+
1
2
uT (t)R(x(t))u(t)

)
dt

with F =




1 0 0
0 1 0
0 0 1


, Q =




1 0 0
0 1 0
0 0 1


 and R = 1,

subject to the nonlinear constrain

ẋ =




x1 0 0
0 −1 −1
x2 1 1


 x +




x1

1
1


 u(t)

for some initial conditions x(0) = (1, 1, 1)T and a
final time tf = 1.5.

The first step is to iterate the nonlinear system
and generate a sequence of LTV optimal con-
trol problems of the form (16). By applying the
orthonormal expansion to each iteration in the
states x(i)(t) and control u(i)(t) as in section 4,
a sequence of optimal controls coefficients is ob-
tained for each iteration β(i)(t). Figure (6) shows
the successive iterated control obtained for each
of the iterations: (thin solid line) for the first
iteration,(−−)for the 2th iteration ..up to (++)
for the 10th iteration. The convergence of the
controls to the optimal control obtained using the



Ricatti equation (thick solid line) is clear. In this
example only 10 iterations were required in order
to obtain a satisfactory approach to the nonlinear
control obtained with the Ricatti algorithm. The
basis used in this case, was the fourier basis. The
authors expect to continue this work by investi-
gating other possible choices of basis.

7. CONCLUSIONS AND FURTHER WORK

In this paper the authors have presented a method
to approach optimal control for a general nonlin-
ear system. The method is based in replacing the
nonlinear optimal control problem by a sequence
of LTV problems. The optimal control for each
of these LTV problems is obtained by expanding
the control and state as a series of terms in some
orthonormal basis and determining the unknown
coefficients of the control. By the convergence of
the sequence of LTV problems to the nonlinear
problem, the convergence of the sequence of coef-
ficients towards the coefficients corresponding to
the optimal control for the nonlinear case can be
inferred.
This method has its main advantage in the fact
that for the general optimal nonlinear control
problem, the classical method of Ricatti equation
does not need to be applied; instead a sequence of
linear algebraic equations is generated, which are
easier to solve.
In this paper the authors have mentioned how
the different choices of orthonormal basis for the
state and control expansions may influence the
performance of the method. It has been shown
how Chebyshev polynomials perform in a better
way than Fourier orthonormal basis: This best
choice of orthonormal basis is currently under
study by the authors and some new results will
be given in a separate paper.
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