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Abstract: The focus of the research is on the design of a decentralized output
feedback controller for a class of large-scale systems using linear matrix inequalities
(LMI). The class of large-scale systems is characterized by unmatched nonlinear
interconnection functions that are uncertain but quadratically bounded in the
overall system state. An elegant LMI solution to the problem is provided in (Siljak
and Stipanovic 2001), but the method requires that the input matrix of each
subsystem be invertible, i.e., each subsystem has as many independent control
inputs as state variables. We provide an LMI solution that does not require
invertibility of the input matrices of each subsystem. Simulation results on an
example are given to validate the design. Copyright c©2005 IFAC
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1. INTRODUCTION

Large-scale interconnected systems can be found in
such diverse fields as electrical power systems, space
structures, manufacturing processes, transportation,
and communication. An important motivation for the
design of decentralized schemes is that the informa-
tion exchange between subsystems of a large-scale
system is not needed; thus, the individual subsystem
controllers are simple and use only locally available
information. Decentralized control of large-scale sys-
tems has received considerable interest in the systems
and control literature. A large body of literature in
decentralized control of large-scale systems can be
found in (Siljak 1991). In (N. R. Sandell et al. 1978),
a survey of early results in decentralized control of
large scale systems was given. Decentralized control
schemes that can achieve desired robust performance
in the presence of uncertain interconnections can be

1 This work was supported by the U.S. National Science
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found in (Ikeda 1989, Zhang et al. 1996, Gong 1995).
A decentralized control scheme for robust stabilization
of a class of nonlinear systems using the Linear Matrix
Inequalities (LMI) framework was proposed in (Siljak
and Stipanovic 2000).

In many practical situations, complete state measure-
ments are not available at each individual subsys-
tem for decentralized control; consequently, one has
to consider decentralized feedback control based on
measurements only or design decentralized observers
to estimate the state of individual subsystems that can
be used for estimated state feedback control. There
has been a strong research effort in literature towards
development of decentralized control schemes based
on output feedback via construction of decentralized
observers. Early work in this area can be found in
(Viswanadham and Ramakrishna 1982, Ikeda 1989,
Siljak 1991). Subsequent work in (Abdel-Jabbar et al.

1998, Aldeen and Marsh 1999, Jiang 2000, Narendra
and Oleng 2002) has focused on the decentralized out-
put feedback problem for a number of special classes



of nonlinear systems. In (Siljak and Stipanovic 2001),
the decentralized controller and observer design prob-
lems were formulated in the LMI framework for large-
scale systems with nonlinear interconnections that
are quadratically bounded. Autonomous linear de-
centralized observer-based output feedback controllers
for all subsystems were obtained. The existence of a
stabilizing controller and observer depended on the
feasibility of solving an optimization problem in the
LMI framework; further, for a solution to exist, this
formulation also required, for each subsystem, the
number of independent control inputs must be equal
to the dimension of the state. A solution based on
the concept of distance to controllability/observability
was proposed in (Pagilla and Zhu 2004); the fea-
sibility of the solution was dependent on satisfying
the distance to controllability/observability of pairs
of matrices being larger than a certain value.

In this paper, we provide a solution that does not
require invertibility of subsystem input matrices as
in (Siljak and Stipanovic 2001). The proposed LMI
solution is obtained as a sequential two part opti-
mization problem. The feasibility of both parts of the
optimization problem is shown and discussed. The
decentralized output feedback problem, the solution
of (Siljak and Stipanovic 2001), and the proposed
LMI solution are given in Section 2. Section 3 gives
simulation results using the proposed method for an
example. Conclusions are given in Section 4.

2. DECENTRALIZED OUTPUT FEEDBACK
CONTROLLER DESIGN

The following class of large-scale interconnected non-
linear systems is considered:

ẋi(t) = Aixi(t) + Biui(t) + hi(t, x), (1a)

yi(t) = Cixi(t) (1b)

where xi ∈ R
ni , ui ∈ R

mi , yi ∈ R
li , hi ∈ R

ni

are the state, input, output, and nonlinear inter-
connection function of the i-th subsystem, and x =[
x⊤

1
x⊤

2
. . . x⊤

N

]⊤
is the state of the overall system.

The term hi(t, x) reflects the interconnection of the
i-th subsystem with other subsystems and the un-
certainty dynamics from the i-subsystem itself. It is
assumed that the exact expression of hi(t, x) is un-
known but is assumed to satisfy the quadratic con-
straints(Siljak and Stipanovic 2001):

hT
i (t, x)hi(t, x) ≤ α2

i x
⊤H⊤

i Hix (2)

where αi > 0 are interconnection bounds and Hi are
bounding matrices. It is also assumed that (Ai, Bi) is
a controllable pair and (Ci, Ai) is an observable pair
for all i ∈ I = {1, 2, . . . , N}.
The objective is to design a totally decentralized
observer-based linear controller that robustly regu-
lates the state of the overall system without any infor-
mation exchange between subsystems, this is, the local

controller ui is constrained to used only local output
signal yi. One specific practical application whose
system model conforms to (1) with the quadratic
interconnection bounds (2) is a multimachine power
system consisting of N interconnected machines with
steam valve control; the dynamic model is discussed
in (Siljak et al. 2002).

The overall system (1) can be rewritten as

ẋ(t) = ADx(t) + BDu(t) + h(t, x), (3a)

y(t) = CDx(t) (3b)

where AD = diag(A1, . . . , AN ), BD = diag(B1, . . . , BN ),

CD = diag(C1, . . . , CN ), u =
[
u⊤

1
. . . u⊤

N

]⊤
, y =

[
y⊤
1

. . . y⊤

N

]⊤
, and h =

[
h⊤

1
. . . h⊤

N

]⊤
. The nonlin-

ear interconnections h(t, x) are bounded as follows:

h⊤(t, x)h(t, x) ≤ x⊤(

N∑

i=1

α2

i H
⊤

i Hi)x =: x⊤Γ⊤Γx (4)

The pair (AD, BD) is controllable and the pair
(CD, AD) is observable, which is the direct result of
each subsystem being controllable and observable.

Since the system (3) is linear with nonlinear intercon-
nections, a common question to ask is under what con-
ditions can we design a decentralized linear controller
and a decentralized linear observer that will stabilize
the system in the presence of bounded quadratic in-
terconnections. Towards solving this problem, one can
consider the following linear decentralized controller
and observer:

u(t) = KDx̂(t), (5)

˙̂x(t) = ADx̂(t) + BDu(t) + LD(y(t) − CDx̂(t)) (6)

where KD = diag(K1, . . . ,KN ), LD = diag(L1, . . . , LN )
are the controller and observer gain matrices, respec-
tively. Rewriting (3) and (6) in the coordinates x(t)

and x̃(t), where x̃(t)
△
= x(t) − x̂(t) is the estimation

error, the closed-loop dynamics is

ẋ(t) = (AD + BDKD)x(t)−BDKDx̃(t)+h(t, x), (7a)

˙̃x(t) = (AD − LDCD)x̃(t) + h(t, x). (7b)

Let

Ac
△
= AD + BDKD, Ao

△
= AD − LDCD. (8)

Consider the following Lyapunov function candidate

V (x, x̃) = x⊤P̄cx + x̃⊤P̄ox̃. (9)

The time derivative of V (x, x̃) along the trajectories
of (7) is given by

V̇ (x, x̃) =

[
x

x̃

h

]⊤[
A⊤

c P̄c + P̄cAc −P̄cBDKD P̄c

−K⊤

D
B⊤

D
P̄c A⊤

o P̄o + P̄oAo P̄o

P̄c P̄o 0

][
x

x̃

h

]
. (10)

The interconnection condition (4) is equivalent to




x

x̃

h



⊤ 


−Γ⊤Γ 0 0

0 0 0
0 0 I







x

x̃

h


 ≤ 0. (11)



The stabilization of the system (7) requires that

V̇ (x, x̃) < 0 (12)

for all x, x̃ 6= 0; together with the condition given by
(11), one can obtain (Boyd et al. 1994) that if
[
A⊤

c P̄c + P̄cAc −P̄cBDKD P̄c

−K⊤

D
B⊤

D
P̄c A⊤

o P̄o + P̄oAo P̄o

P̄c P̄o 0

]
− τ

[
−Γ⊤Γ 0 0

0 0 0
0 0 I

]
< 0,

(13a)

P̄c > 0, P̄o > 0, τ > 0, (13b)

then the inequality (12) is satisfied. Let

Pc
△
=

P̄c

τ
, Po

△
=

P̄o

τ
.

The condition given by (13) is equivalent to
[

A⊤
c Pc + PcAc + Γ⊤Γ −PcBDKD Pc

−K⊤

D
B⊤

D
Pc A⊤

o Po + PoAo Po

Pc Po −I

]
< 0, (14a)

Pc > 0, Po > 0. (14b)

Considering (4) and (8), and applying the Schur
complement to the inequality (14), results in

Pc > 0, Po > 0, (15a)



WC −PcBDKD Pc α1H⊤

1
. . . αNH⊤

N

−(PcBDKD)⊤ WO Po 0 . . . 0
Pc Po −I 0 . . . 0

α1H1 0 0 −I . . . 0
.
.
. 0

.

.

.
.
.
.

. . .
.
.
.

αNHN 0 0 0 . . . −I




< 0 (15b)

where WC
△
= A⊤

D
Pc +PcAD +(PcBDKD)⊤+(PcBDKD) and

WO
△
= A⊤

D
Po+PoAD−PoLDCD−(PoLDCD)⊤. Rearranging

entries and scaling corresponding columns and rows
related to Hi, i = 1, . . . , N , on the left hand side
matrix (15b), one obtains

Pc > 0, Po > 0, (16a)



WC H⊤

1
. . . H⊤

N
−PcBDKD Pc

H1 −γ1I . . . 0 0 0
.
..

.

..
. . .

.

.. 0 0

HN 0 . . . −γN I 0 0
−(PcBDKD)⊤ 0 0 0 WO Po

Pc 0 0 0 Po −I




< 0 (16b)

where γi =
1

α2

i

> 0. Now the problem of stabilization

of the large-scale system (1) by decentralized output
feedback control is transferred to the problem of find-
ing finding γi > 0, i ∈ I, such that inequalities in (16)
are satisfied. Further, if the following optimization
problem

Minimize

N∑

i=1

γi subject to Equation (16) (17)

is feasible, the selection of the control gain matrix KD

and observer gain matrix LD not only stabilizes the
overall system (7), but also simultaneously maximize
the interconnection bounds αi.

In the optimization problem given by (17), variables
are Pc, Po, KD, LD and γi, i ∈ I. Since there
are coupled term of matrix variables Pc and KD,
and Po and LD in the matrix inequality (16b), the

optimization (17) is not on a convex set. One has to
find a way to transform the inequality (16b) to a form
which is affine in variables. To achieve this, one can
introduce variables

MD
△
= PcBDKD, ND

△
= PoLD. (18)

Then, the optimization problem (17) becomes

Minimize

N∑

i=1

γi subject to

Pc > 0, Po > 0, (19a)



WC H⊤

1
. . . H⊤

N
−MD Pc

H1 −γ1I . . . 0 0 0
.
..

.

..
. . .

.

.. 0 0
HN 0 . . . −γN I 0 0

−M⊤

D
0 0 0 WO Po

Pc 0 0 0 Po −I




< 0 (19b)

The solution to the optimization problem (19) gives
rise to MD and ND. The controller and observer gain
matrices were obtained from MD and ND in (Siljak
and Stipanovic 2001) in the following manner. The
observer gain matrix LD can be computed using (18)
as

LD = P−1

o ND.

However, controller gain matrix KD can be obtained
only in the case when BD is invertible, that is,

KD = B−1

D P−1

c MD.

Obviously, invertibility of BD requires that Bi, i ∈ I

be invertible, which is too restrictive. When all the
Bi are not invertible, it is not possible to obtain
the control gain matrix KD from the optimization
problem (19). The following addresses the proposed
LMI solution to the case when Bi are not invertible.

One can pre-multiply and post-multiply the left hand
side of (16b) by diag(P−1

c , I) and define Y = P−1

c
to obtain following conditions which are equivalent to
(16):

Y > 0, Po > 0, (20a)



W ′

C
Y H⊤

1
. . . Y H⊤

N
−BDKD I

H1Y −γ1I . . . 0 0 0
.
..

.

..
. . .

.

.. 0 0
HNY 0 . . . −γN I 0 0

−(BDKD)⊤ 0 0 0 WO Po

I 0 0 0 Po −I




< 0 (20b)

where W ′

C

△
= Y A⊤

D +ADY +(BDKDY )⊤+(BDKDY ).

Let M̄D
△
= KDY ,

[
S1 S2

] △
=




−BDKD I

0 0
...

...
0 0


. Now,

the problem is to find Y , Po, KD, LD, and γi, i ∈ I,
which can be found by the following two steps.

Step 1. Maximize the interconnection bounds αi by
solving the following optimization problem:



Minimize
N∑

i=1

γi subject to

Y > 0, Fopt =




W ′

C
Y H⊤

1
. . . Y H⊤

N

H1Y −γ1I . . . 0
.
.
.

.

.

.
. . .

.

.

.
HNY 0 . . . −γN I


 < 0. (21)

Step 2. Find Po and ND by using KD obtained from
Step 1 and solving the following optimization problem

Minimize

N∑

i=1

βi subject to

Po > 0,Λ > 0,

[
ΛFopt S1 S2

S⊤

1
WO Po

S⊤

2
Po −I

]
< 0. (22)

where Λ = diag(β1I1, β2I2, . . . , βNIN , β1I1, β2I2, . . . ,

βNIN ), and Ii denotes the ni × ni identity matrix.
The matrices Fopt and S1 in Step 2 are obtained from
Step 1.

The control gain KD is obtained from Step 1 as

KD = M̄DY −1, (23)

and the observer gain LD is obtained from Step 2 as

LD = P−1

o ND. (24)

Remark 1. Unlike the case when BD is invertible,
inequalities given by (21) and (22) cannot be solved
simultaneously. The optimization problem (21) of step
1 must be solved followed by step 2.

Remark 2. Since Y , AD, BD and M̄D are all block
diagonal matrices, it is not difficult to show that
ΛFopt = Λ1/2FoptΛ

1/2 < 0 when Fopt < 0. Also, if
βi > 1, i ∈ I, ΛFopt < Fopt < 0. Further, notice
that the solution KD obtained from the optimization
problem Fopt < 0 is unchanged if we solve the
optimization problem ΛFopt < 0 because of the chosen
structure of Λ.

Remark 3. If Λ = I, the LMI (22) may not be feasible
for the selection of Fopt and KD resulting from the
optimization problem (21). On the other hand, by
choosing Λ as a matrix variable, the LMI (22) becomes
feasible, which will be shown in the following.

The following lemmas illustrate the feasibility of the
LMI problems (21) and (22).

Lemma 1. The optimization problem given by (21) is
feasible if (Ai, Bi), i = 1, . . . , N , is a controllable pair.

Proof. To prove the LMI optimization problem (21) is
feasible, one needs to show that there exists a solution
that satisfies the inequality (21). In view of (21) and
Hi being constant matrices, to show that there exist
Y > 0, M̄D, γi > 0, i = 1, . . . , N , such that Fopt < 0,
it is sufficient to show that

there exists a Y > 0, M̄D such that

W ′

C < 0
(25)

because of the existence of large enough γito dominate
the off-diagonal block elements Hi in (21). Notice that

W ′

C =Y A⊤

D + ADY + (BDM̄D)⊤ + BDM̄D

=P−1

c A⊤

D + ADP−1

c + (BDKDP−1

c )⊤ + BDKDP−1

c

=P−1

c

(
(AD + BDKD)⊤Pc + Pc(AD + BDKD)

)
P−1

c .

Since (Ai, Bi) is a controllable pair (which implies
(AD, BD) is a controllable pair), there exist a Pc > 0
and a KD such that

(AD + BDKD)⊤Pc + Pc(AD + BDKD) < 0.

Therefore, the statement (25) is true. This completes
the proof. ¥

Lemma 2. If (Ai, Ci), i = 1, . . . , N is an observable
pair, the optimization problem (22) is feasible.

Proof. We first prove that

there exists a Po > 0 and ND such that[
WO Po

Po −I

]
< 0.

(26)

Applying the Schur complement to the above matrix
inequality yields the following equivalent inequality

WO + PoPo < 0. (27)

Recall that ND = PoLD and WO = A⊤

DPo + PoAD −
PoLDCD −(PoLDCD)⊤. Equation (27) can be rewrit-
ten as

Po

(
(AD − LDCD)Yo + Yo(AD − LDCD)⊤ + I

)
Po < 0 (28)

where Yo = P−1

o . Since (Ai, Ci) is an observable pair
(which implies (AD, CD) is an observable pair), there
exists a Yo > 0 and an LD such that

(AD − LDCD)Yo + Yo(AD − LDCD)⊤ + I < 0.

Hence, the statement (26) is true.

Since Fopt < 0 and the statement (26) is true, all the
principal minors of the matrix on the left hand side
of (22) are negative. Since S1 and S2 are constant
matrices after solving the optimization given in Step
1, to guarantee that (22) holds, it is sufficient to let
the principal minor ΛFopt dominate the off-diagonal
block elements S1 and S2; this can be achieved by a
large Λ > 0. This completes the proof. ¥

Remark 4. The final uncertainty gains are βiγi, i ∈ I,
where γi is obtained from the optimization problem
(21) and βi is obtained from (22).

The LMI optimization problems given by (21) and
(22) do not pose any restrictions on the size of the
matrix variables Y , M̄D, Po and ND. Consequently,
the results of these two optimization problems may
yield very large controller and observer gain matrices
KD and LD, respectively. In view of (23) and (24), one
can restrict KD and LD by posing constraints on the
matrices Y , M̄D, Po and ND, and a further constraint
on γi (Siljak and Stipanovic 2000) as



γi −
1

ᾱ2

i

< 0, ᾱi > 0; Yi
−1 < κYi

I, κYi
> 0;

M̄Di
M̄⊤

Di
< κM̄Di

I, κM̄Di

> 0; (29)

βi − β̄i > 0, β̄i > 0; Poi

−1 < κPoi
I, κPoi

> 0;

N⊤

Di
NDi

< κNDi
I, κNDi

> 0 (30)

where M̄Di
and NDi

are the i-th diagonal block of
M̄D and ND, respectively. Equations (29) and (30)
are respectively equivalent to

γi −
1

ᾱ2

i

< 0,

[
−Yi −I

−I −κYi
I

]
< 0,

[−κM̄Di

I M̄Di

M̄⊤

Di
−I

]
< 0, κYi

, κM̄Di

> 0, (31)

βi − β̄i > 0,

[
−Poi

−I

−I −κPoi
I

]
< 0,

[
−κNDi

N⊤

Di

NDi
−I

]
< 0, κNDi

, κPoi
> 0. (32)

Combining (21) and (31), (22) and (32), and changing
the optimization objectives to the minimization of∑N

i=1
(γi + κYi

+ κM̄Di

) and
∑N

i=1
(βi + κPoi

+ κNDi
),

respectively, results in the following two LMI opti-
mization problems:

Step 1′. Maximize the interconnection bounds αi by
solving the following optimization problem:

Minimize

N∑

i=1

(γi + κYi
+ κM̄Di

) subject to

Equations (21) and (31). (33)

Step 2′. Find Po and ND by using KD obtained
from Step 1′ and solving the following optimization
problem

Minimize

N∑

i=1

(βi + κPoi
+ κNDi

) subject to

Equations (22) and (32). (34)

Similar to Lemmas 1 and 2, it can be shown that the
optimization problems (33) and (34) are feasible when
all the subsystems are controllable and observable,
provided that ᾱi is chosen sufficient small. This is
because one can choose large β̄, κM̄Di

, κYi
, κNDi

and

κPoi
, and small ᾱi to satisfy (31) and (32).

The results of the LMI solution to the decentralized
output feedback control problem for the large scale
system (1) are summarized in the following theorem.

Theorem 1. Consider the large scale system (1) with
the observer given by (6) and the controller given by
(5). If

αi ≤ min(
1√
γi

,
1√
βiγi

) (35)

where γi and βi are solutions to the optimization
problems (33) and (34), then the selection of controller
and observer gain matrices given by (23) and (24)
results in a stable closed-loop system.

3. NUMERICAL EXAMPLE AND SIMULATION

Consider the following large-scale system composed of
two subsystems:

ẋ1 =

[
0 1
0 0

]
x1 +

[
0
1

]
u1 + h1(x), y1 =

[
1 0

]
x1; (36a)

ẋ2 =

[
0 1 0
0 0 1
0 0 0

]
x2 +

[
0
0
1

]
u2 + h2(x), y2 =

[
1 0 0

]
x2 (36b)

where x1 =
[
x11 x12

]⊤
, x2 =

[
x21 x22 x23

]⊤
,

x =
[
x⊤

1
x⊤

2

]⊤
, h1(x) = α1 cos(x22)H1x, h2(x) =

α1 cos(x11)H2x, α1 = α2 = 0.1, H1 =
1√
10

[
1 1 1 1 1
1 1 1 1 1

]
,

and H2 =
1√
15




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


.

Choosing ᾱi = 0.001, βi = 0.0001, i = 1, 2, and solving
the optimization problems (33) and (34) results in

MD =

[
2.7773 −3.0854 0 0 0

0 0 −0.20276 −1.6091 −3.1217

]
,

Y =




25.4611 −14.0572 0 0 0
−14.0572 9.36744 0 0 0

0 0 47.4557 −35.8544 6.51817
0 0 −35.8544 41.4759 −17.3584
0 0 6.51817 −17.3584 14.7546


 ,

ND =




0.65833 0
0.51052 0

0 1.193
0 0.98386

0 −0.39479


 ,

Po =




0.98889 −0.39895 0 0 0

−0.39895 0.59679 0 0 0
0 0 1.4986 −0.29952 −0.12104

0 0 −0.29952 0.50936 −0.43087
0 0 −0.12104 −0.43087 0.70333


 ,

γ1 = 13.8634, γ2 = 2.7773, β1 = 4.9354, β2 = 11.3989.

Gain matrices KD and LD are found to be

KD =

[
−0.42433 −0.96614 0 0 0

0 0 −0.8614 −1.404 −1.4828

]
,

LD =




1.3841 0
1.7807 0

0 2.4812
0 6.8017
0 4.0325




by (23) and (24), respectively. It is easy to check
that the condition given by (35) is satisfied. Hence,
according to Theorem 1, the closed-loop system is
quadratically stable.

The simulation results are shown in Figures 1 and 2.
In Figure 1, the state x11 and its estimate x̂11, the
state x12 and its estimate x̂12, and the control u1 are
shown in the first, second and third plot, respectively.
Figure 2 shows the states x2, their estimates x̂2, and
the control u2. It can be observed from both the
figures that the state of the overall system, x, and
their estimates, x̂, converge to zero.



4. SUMMARY

In this paper, an LMI solution to the decentralized
output feedback control problem for a class of large-
scale interconnected nonlinear systems is given. The
interconnecting nonlinearity of each subsystem was
assumed to be bounded by a quadratic form of states
of the overall system. Local output signals from each
subsystem were used to generate the local control
inputs and exact knowledge of the nonlinear inter-
connections is not required for the proposed solution.
Simulation results on a numerical example verify the
proposed design. The contribution of this research
over prior work is that the requirement that input
matrix of each subsystem be invertible is relaxed.
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Fig. 1. Simulation result for the first subsystem (36a)
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