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1. INTRODUCTION

Robust control tools have the potential to optimize
the performance of economical and financial systems.
Central to this approach is the modelling of the system
under consideration as a linear time invariant (LTI)
system subject to norm bound uncertainty. Robust
optimization techniques can then be used to optimize
the worst–case performance of the model (Sargent
1999, Tornell 2000, Sargent 2000, Stock 2000).

However, success of these techniques hinges upon the
ability to obtain both a nominal model and an un-
certainty description suitable to be used in a robust
optimization context. Classical Bayesian analysis has
been used extensively in economical systems mod-
elling. In this approach, a parametric model, based on
first principles is postulated anda priori probability
distributions are assigned to each parameter. However,
obtaining these parametric models and the associated
probability distributions poses difficult practical prob-
lems (Rudebusch 1998). In addition, these probability
distributions should be validated, as more experimen-
tal data becomes available. Wieland (1996) proposes
to accomplish this by incorporating learning to update
posteriors. However, since this approach is stochastic

in nature, it can neither provide the uncertainty bounds
required by the robust control tools nor conclusively
invalidate thea priori assumptions.

To avoid these difficulties in this paper we propose
to use robust identification and model (in)validation
tools to obtain and validate models of economic sub-
systems, together with a worst–case uncertainty de-
scription. Accomplishing this requires extending cur-
rently existing techniques to handle unknown ini-
tial conditions. In principle this leads to an NP–hard
problem involving bilinear matrix inequalities (BMIs).
However, as we show in the paper, a convex relaxation
is readily available.

The potential of the proposed approach is illustrated
by using historical data from 21 quarters (starting with
the first quarter of 1961, henceforth denoted as 1961.1,
and ending in 1966.1) to identify and validate a model
relating U. S. Federal Reserve Bank (FED) short-
term interest rates (the input variable), to inflation
rate (output variable). The resulting model was able
to correctly forecast the inflation rate for the next 149
quarters (1966.2 through 2003.2). For comparison, the
widely used Rudebusch–Svensson model (Rudebusch
and Svensson 1998), obtained through a least squares



fitting of the historical data from 1961.1 to 1996.2, and
with the same order, yields a poorer fit.

2. PRELIMINARIES

2.1 Notation

In the sequel̀mp denotes the Banach space of vector-
valued sequences equipped with thep norm. L∞
denotes the Lebesgue space of complex-valued ma-
trix functions essentially bounded on the unit circle,
equipped with the norm‖G‖∞

.= sup|z|=1 σ (G(z));
H∞ the subspace of functions inL∞ with bounded
analytic continuation inside the unit disk, equipped
with the norm ‖G‖∞

.= sup|z|<1 σ (G(z)); and
H∞,ρ the space of transfer matrices inH∞ equipped
with the norm‖G‖∞,ρ

.= sup|z|<ρ σ (G(z)). Finally,
BX (γ) denotes the openγ-ball in a normed spaceX ,
andBX the open unit ball inX .

From an input–output viewpoint any operator of in-
terestG will be represented either by a (rational)
complex–valued transfer function:G(z) .=

∑∞
k=0 gkz

k

or a minimal state–space realization:

G ≡
(

A B
C D

)
(1)

In the sequel we will denote byTG : `∞[0,∞) →
`∞[0,∞) and ΓG : `∞(−∞,−1] → `∞[0,∞) the
Toeplitz and Hankel operators associated with an`∞

stable system G. Further, when dealing with finite se-
quences of lengthN we will represent these operator
by the finite matricesTNG :

y0

y1

y2

...
yN−1

 =


g0 0 0 . . .
g1 g0 0 . . .
g2 g1 g0

...
...

...
...

gN−1 gN−2 . . . go




u0

u1

u2

...
uN−1

 . (2)

andHNG :
y0

y1

y2

...
yN−1

 =


g1 g2 . . . gN
g2 g3 . . . gN+1

...
... . . .

...
gN gN+1 . . . g2N−1



u−1

u−2

u−3

...
u−N

 . (3)

2.2 Background results on interpolation theory

The following results will be used in the paper to
establish the existence of LTI systems with the appro-
priate features.

Lemma 1.(Carath́eodory-Fej́er). Given a matrix val-
ued sequence{Li}n−1

i=0 , there exists a causal, discrete-
time, LTI operatorL(z) ∈ BH∞ such that

L(z) = L0 + Lz + L2z
2 + . . . Ln−1z

n−1 + . . . (4)

if and only if (TnL)TTnL ≤ I.

Proof: See for instance Foias and Frazho (1990).

In the sequel we will consider systems of the formS:

S .= {G(z) = H(z) + P (z)} . (5)

whereH(z) ∈ BH∞,ρ(K) for someρ ≥ 1 andP (z)
represent the nonparametric and parametric compo-
nents of the operator respectively. We will further as-
sume thatP (z) belongs to the following classP of
affine operators:

P .= {P (z) = pTGp(z), p ∈ RNp}, (6)

where theNp componentsGpi(z) of vectorGp(z) are
known, linearly independent, rational transfer func-
tions. The following result gives a necessary and suf-
ficient condition for two finite vector sequences to be
related by an operator in the familyS.

Lemma 2.[Parrilo et al. (1999)] GivenK, ρ and two
vector sequences(u,y), there exists an operatorS ∈
S such thaty = Su if and only if there exists a vector
h satisfying:

M(h) .=
[
KR−2 (TNh )T

TNh KR2

]
≥ 0

y = TNu Pp + TNu h
(7)

where(P)k
.= [g1

k g
2
k · · · g

Np
k ],wheregik denotes the

k-th Markov parameter of the i-th transfer function
Gpi(z), hk is the k-th Markov parameter of the non-
parametric componentH(z), TNu is the lower Toepliz
matrix associated with the sequenceu, and where

R = diag
[

1 ρ ρ2 . . . ρN−1
]

Moreover, in this case all such operatorsS can be
parameterized in in terms of a free parameterQ(z) ∈
BH∞. In particular, the choiceQ(z) = 0 leads to
the “central” modelScentral(z) = Ho(z) + pTGp(z)
where an explicit state–space realization ofHo(z) can
be found for instance in Parriloet al. (1998)

3. SEMI–BLIND IDENTIFICATION

3.1 Motivation: Macro-Economic Modelling

The goal of this paper is to illustrate the applicability
of robust identification/model (in)validation to macro-
economic modelling. To this effect, we will obtain and
validate a model of the subsystem of the US economy
relating FED funds rates to inflation. An empirical,
simplified model of this subsystem, the Rudebusch
and Svensson(RS) model, is already available in the
literature (Rudebusch and Svensson 1998):

πt+1 = 0.7πt − 0.1πt−1 + 0.28πt−2+
+ 0.12πt−3 + 0.14yt + εt+1

yt+1 = 1.16yt − 0.25yt−1 − 0.1(it − πt)
+ ηt+1

(8)

whereπt = 400.[ln(pt) − ln(pt−1)] is the quarterly
inflation in the Gross-Domestic Product(GDP) chain-
weighted price index(pt) in percent at an annual rate,



πt = 0.25.
∑3
k=0(πt−k) is the 4-quarter average of

the inflation,yt = 100( qt−q
∗
t

q∗t
) is the percentage gap

between actual real(qt) and potential GDP(q∗t ), it is
the quarterly Fed funds rate in percent at an annual
rate, it = 0.25.

∑3
k=0(it−k) is the 4-quarter average

of the Fed funds rate andεt+1, ηt+1 are i.i.d zero
mean disturbances. This model was obtained by least
squares fitting of historical data from the first quarter
of 1961 through the second quarter of 1996.
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Fig. 1.Historical Inflation Data and RS model fit, maximum error
is 3.75

As shown in Figure 1, the RS model indeed fits the
training data. Note however that (i) this technique
requires a large amount of data points, while at the
same time not exploitinga priori information avail-
able about the subsystem in question, and, (ii) no
conclusions can be drawn about modelling and fu-
ture prediction errors. The goal of this paper is to
show that these difficulties can be avoided by us-
ing a deterministic, set membership approach. Robust
identification of LTI systems has been well studied
during the past few years (see for instance the text-
book (Chen and Gu 2000). In particular, the method
that we will use in this paper is an extension of
the mixed parametric/non–parametric approach intro-
duced by Parriloet al. (1999). However, contrary to
the case commonly addressed in robust identification,
only a partial (in this case post 1961.1) experimental
data record is available. The effect of inputs prior to
1961.1 are encapsulated in some (unknown) non zero
initial conditionsxo. Ignoring these initial conditions
would lead to artificially high identification errors.

3.2 Identification with unknown initial conditions

The presence of unknown, non–zero initial conditions
noted above motivates the followingsemi-blindiden-
tification problem:

Problem 1.Given an unknown plant,a priori sets of
candidate models and noise(S,N ) and a finite set

of samples of the inputu to the plant and its corre-
sponding outputy corrupted by additive measurement
noiseη, find a modelg compatible with both thea
priori information and thea posteriori experimental
data, that isg ∈ T (y), where

T (y) .= {g ∈ S : yk −
k∑
i=0

hiuk−i

−Cg∗Ak−1
g xo ∈ N , k = 0, . . . , N−1}, for somexo

(9)

where

g =
(
Ag Bg
Cg Dg

)
, ho = Dg, hi = CgA

i−1
g Bg

It can be shown, by invoking Lemma 2, that the
problem above reduces to a BMI in{hi} and xo.
However, BMIs generically lead to non–convex, NP–
hard optimization problems. To avoid this difficulty, in
the sequel we propose a convex relaxation of Problem
1. To this effect, we will assume that thepast inputs
to the system are known to belong to some setU− 1 .
Thus the effect of the unknown initial conditionxo
can be replaced by the effect of an unknown signal
u− ∈ U− acting in (−∞,−1]. This leads to the
following reformulation of equation (9):

T (y) .= {g ∈ S : yk − (Γgu−)k − (Tgu+)k ∈ N
k = 0, . . . , N − 1}, for someu− ∈ U− (10)

whereu+
.= {u0, u1, . . . , uN−1} and whereΓg and

Tg represent the Hankel and Toeplitz operators asso-
ciated with the systemg respectively. Next, replace
(Γgu−)k by a new variablexk subject to the constraint
that xk = (Γgu−)k for someu− ∈ U−. Assuming
that the set of admissible past inputs has the form
U = B`p(Ku) and that a bound‖Γg‖`p→`∞ ≤ γ is
available as part of thea priori information, this leads
to the following convex relaxation of problem 1:

Problem 2.Given an unknown plant, thea priori sets
of candidate models, past inputs and noise(S,U−,N )
and a finite set of samples of the input and output of
the plant(u,y) in [0, N − 1], find a modelg ∈ T (y),
where:

T (y) .= {g ∈ S : yk − xk − (Tgu+)k ∈ N
for some|x|k ≤ γKu, k = 0, . . . , N − 1} (11)

Straightforward application of Lemma 2 leads now to
the following result:

Proposition 1.Problem 2 has a solution if and only if
the following set of LMIs inh,x is feasible:

1 As we will show in the sequel, this assumption holds for the
economic subsystem under consideration here.



M(h) .=
[
KR−2 (TNh )T

TNh KR2

]
≥ 0

y − TNu Pp− TNu h− x ∈ N
−γKu ≤ x ≤ γKu

(12)

where the last two inequalities should be interpreted
in a component–wise sense.

3.3 Identification results:

The experimental data used in this paper, obtained
from the websiteswww.marketvector.com and
www.federalreserve.gov , consists of histori-
cal values of the quarterly U.S. FED funds rate,ik,
and the corresponding values of the inflationyk. In
order to account for the difficulty in exactly measuring
inflation, in the sequel we will assume thatyk = πk +
ηk, whereyk, πk, ηk denote the measured inflation, the
actual inflation and additive noise, respectively. We
will postulate a simplified scenario where the inflation
π is assumed to be the output of an unknown, stable
LTI system in response to the input sequenceik. In
order to apply the framework discussed in the previous
section, we need a characterization of the set of past
inputs U−. In principle, one could just characterize
this set as0 ≤ i− ≤ iimax whereimax is some bound
on the maximum historical FED funds rate. However,
this bound is potentially too coarse, since the FED
funds rate has changed considerably over the period
under consideration. On the other hand, the quarterly
changein the FED funds rate is substantially lower
and more uniform across the period of interest. Thus, a
much tighter bound on the past inputs can be obtained
by identifying an operatorS mapping thechangein
FED funds rate,uk = ik − ik−1, to inflationπk+1.
Note that this operator should then include an integra-
tor in its parametric portion. Finally, from a Fourier
analysis of the input/output data it was determined that
an upper bound ofρ is given byρ ≤ 1.02. With these
assumptions, thea priori information is given by:

S =
{
H(z) = p1

z

z − 1
+Gnp(z) |

Gnp(z) ∈ BH∞,ρ(K)}
N = {η ∈ `∞ : |ηk| ≤ ε} , ε = 0.2
U− = {u ∈ `∞ : |uk| ≤ umax} , umax = 0.5

xk = p · ik + xnpk , |xnpn | ≤ K
ρ−n

ρ− 1
0.5

(13)

where the last equation comes from the facts that:

xk = p
k∑

j=−∞
(ij − ij−1) + Γnpu− = ik + Γnpu−

|(Γnpu−)k| = |
−1∑

j=−∞
gnpk−juj | ≤ |umax|

∞∑
k+1

|gnpj |

andGnp ∈ BH∞,ρ(K)⇒ |gnpn | ≤ Kρ−n.

Running the identification algorithm outlined in the
previous section usingN = 21 historical values of
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Fig. 2. Historical (solid line) versus predicted (’o’) inflation: ’+’
indicates a point used in the identification

inflation and FED funds rates (from 1961.1 to 1966.1)
led (after eliminating unobservable/uncontrollable states)
to the following4th order model:

πk+4 = 0.526πk+3 + 0.074πk+2 − 0.13πk+1

+ 0.506πk + 0.522uk+4 + 0.208uk+3

+ 0.184uk+2 + 0.276uk+1 − 0.024uk

(14)

The forecasting power of this model is illustrated in
Figure 2, where it was used to estimate the inflation for
the entire 1961.1-2003.2 quarters, using as inputs past
historical data for inflation and changes in FED funds
rates. As shown there, the model (14) yields a worst–
case error of 3.37. For comparison, the RS model has
a worst case error of 3.75, (roughly 11% higher) even
though it was obtained considering 142 data points.

3.4 Worst case prediction error bounds

As we illustrate next, one of the advantages of the ap-
proach outlined above, is its ability to provide worst–
case bounds on the prediction error. Begin by noting
that the algorithm is interpolatory, that is it produces
a model inside the consistency setT (y). Thus, since
the “true” system must also belong to the consistency
set2 , it follows that, given the firstN measurements
yi, i = 0, . . . , N − 1 a bound on the worst case
prediction error att = N is given by:

|eN | ≤ sup
g1,g2∈T (y)

| [(Tg1 − Tg2 )u+ + Γg1u−1

− Γg2u−2]N | = d[T (y)] ≤ sup
y

d[T (y)] = D(I)
(15)

where d(.) and D(I) denote the diameter of the
set T (y), in the sup–metric, and the diameter of
information, respectively. Moreover, since thea priori
sets(S,N ) are convex and symmetric, with points of
symmetrygs = 0 andηs = 0 respectively, it can be
shown (see for instance Lemma 10.3 in (Sánchez Pẽna
and Sznaier 1998)) that:

D(I) ≤ 2 sup
g∈T (0)

∣∣∣∣∣p · iN +

N∑
j=0

hN−j · uj +K ·Ku
ρ−N+1

ρ− 1

∣∣∣∣∣
(16)

2 As long as thea priori information is indeed correct.



whereT (0) indicate the set of operators compatible
with the zero outcome:yk = 0, k = 0, 1, . . . , N −
1. This leads to the following convex optimization
problem:

max |p · iN +
N∑
j=0

hN−juj +K ·Ku
ρ−N+1

ρ− 1
| (17)

subject to:

M(h) .=
[
KR−2 (TNh )T

TNh KR2

]
≥ 0

‖TuPp + Tuh + x‖`∞ ≤ ε

|xj | ≤ K ·Ku
ρ−j

ρ− 1
, |u(N)| ≤ umax

|iN | ≤ imax, |hN | ≤ Kρ−N

(18)

Next we illustrate the use of this bound by obtaining
an estimate of the prediction error atN = 22, the
first historical data point not used in the identification.
Solving the problem above withumax = 0.6 and
imax = 6, yields |e22| ≤ 2.37 (actual error is 1.05).
The bounds corresponding toN = 25 andN = 30 are
1.99 and 1.95, showing that, as expected, the error gets
smaller as more points are used in the identification.

4. SEMI–BLIND MODEL (IN)VALIDATION

Next we turn our attention to the related problem of
model (in)validation. From a practical standpoint, be-
fore using the model (14) to decide macro-economic
policy, it should be validated usingnew data, that
has not been used in the identification process (to
avoid introducing biases). In addition, this process will
provide worst–case bounds on the model uncertainty
associated with the description (14)3 Finally, this val-
idation step can also indicate when the model is no
longer compatible with the measured data, for instance
due to changing parameters, providing a mechanism
to answer Lucas’ critique (Lucas 1976) questioning
the usefulness of using identified models for macro-
economic forecasting.

Assuming multiplicative uncertainty and additive noise
leads to the following (in)validation problem:

Problem 3.Given experimental data{yk,u+
k }, con-

sisting ofN measurements of the quarterly inflation
and the change in Federal Reserve funds rate, a nom-
inal modelS and set descriptionsN ,∆∆∆ and Xo of
admissible noise, uncertainty and initial conditions,
determine if there exists at least one triple(η,∆,xo) ∈
N ×∆∆∆ × Xo that can reproduce the available experi-
mental evidence:

y = (I + ∆)(TSu+ + T icS xo) + η (19)

whereTS andT icS denote the operators that map the
input and initial conditions of systemS to its output.

3 these bounds are typically substantially tighter than the ones ob-
tained by computing an upper bound on the diameter of information
(Chen and Gu 2000).

S-u+,u− -
π

- ∆

?j+ -
y

6
η

ξ

Fig. 3.The Set-Up for Semi–Blind Model Invalidation.

Compared to standard invalidation problems, the prob-
lem above has an additional term due to unknown
initial conditions. As in the identification case, this
term can be replaced by the action of some unknown
input acting in[−T,−1], for someT > 0, that is,
establishing existence of a triple(η,∆,u−) ∈ N ×
∆∆∆× U− such that:

y = (I + ∆)(TSu+ + ΓSu−) + η (20)

whereU− and ΓS denote the set of admissible past
inputs and the Hankel operator associated withS,
respectively. Equivalently (see Figure 3), the model is
not invalidated by the experimental data if and only
if there exists some∆ ∈ ∆∆∆ such thaty − π −
η
.= ξ = ∆π. Straightforward application of Lemma

1 assuming unstructured uncertainty of the form∆∆∆ =
BH∞(δ) shows that this is equivalent to feasibility of
the following inequalities

(TNξ )T (TNξ ) ≤ δ2(TNπ )T (TNπ ) ⇐⇒ δ2(TNπ )T (TNπ )

− (TNy − TNπ − TNη )T (TNy − TNπ − TNη ) ≥ 0
(21)

whereTNπ
.= TNS TNu+ +H

N−
S T

N−
u− , and whereTNS and

H
N−
S are the (finite) Toeplitz and Hankel matrix as-

sociated with the systemS. Unfortunately (21) is not
jointly convex on all the variables involved, due to the
cross–termsTNη

T
H
N−
S T

N−
u− . To avoid the difficulties

associated with solving non–convex problems, in the
sequel we propose a tractable convex relaxation.

4.1 A Deterministic Convex Relaxation

S-u+,u− - j+
6
η̃

z
-

- ∆

?j+ -
yξ

Fig. 4.A Convex Relaxation for Semi–Blind Invalidation.

Consider the alternative setup shown in Fig. 4, where
the measurement noise is also affected by the un-
known error dynamics∆:

y = (I + ∆)(TSu+ + ΓSu− + η̃) (22)

When compared to the original setup shown in Fig. 3,
it can be easily seen that the only difference is in the
measurement noise level. Specifically, if there exists
a triple (u−, η̃,∆) satisfying (22) with‖η̃‖2 ≤ ε̃ and



Table 1. Model Invalidation Results: Iden-
tified versus R.S. model

Data range Prediction error ‖∆‖∞ ‖∆RS‖∞
5-170 1.7 0.5 0.63
5-170 2 0.3 0.4575

‖∆‖∞ ≤ δ, then the triple(u−, η,∆) with η
.= (1 +

∆)η̃ satisfies (20). Thus, one can attempt to find a
solution to the original problem by searching for a
solution to the model (in)validation problem shown in
Fig. 4, with noise level̃ε

.= ε
1+δ . As we show in the

sequel this leads to a convex optimization problem. In
addition, one will expect that if‖∆‖∞ � 1 then this
approximation is not too conservative. This conjecture
will be experimentally substantiated in section 4.2.

Theorem 1.There exists a feasible triple(η,∆,u−) ∈
N × ∆∆∆ × U− that satisfies (22) if and only if there
exists at least one pair of finite sequencesu− =
{u−−1,u

−
−2, · · · ,u

−
−N−−1} ∈ U− and η̃ ∈ Ñ and

someδ < 1 such that the following LMI holds:

A1
.=
[

X(u−) (TNω̃ )T

TNω̃ (δ2 − 1)−1I

]
≤ 0 (23)

where:

TNω̃
.= TNS TNu+ + H

N−
S T

N−
u−

X
.= (TNy )T · TNy − (TNy )T · TNω̃ − (Tω̃N )

T · TNy

Proof: (Sketch). The proof follows from applying
Lemma 1 to the signalsz andξ (in Fig. 4) and straight-
forward manipulations (omitted for space reasons).

4.2 Experimental Results:

The (in)validation procedure outlined above was ap-
plied to the model (14) identified in section 3.3, seek-
ing to establish the minimum size of the uncertainty
such that, for a given measurement error level, the
model is not invalidated by the experimental data. For
comparison purposes the same process was performed
using the empirical RS model. The results are sum-
marized in Table 1. In all cases the initial conditions
at t = 0 were assumed to have been reached by a se-
quence of past inputsu− ∈ [−4,−1]) with |uk| ≤ 0.5.

5. CONCLUSIONS

Many problems of practical interest involve identi-
fying and validating models from experimental data,
but where the experiment cannot be controlled, in the
sense that the researcher can choose neither the test
input nor the initial conditions of the system under
observation. This leads to non–convex, generically NP
hard optimization problems. To avoid this difficulty, in
this paper we propose tractable convex relaxations that
perform well in practice.

These results were illustrated by identifying and vali-
dating an economic model relating interest rates to in-
flation. The resulting model was shown to outperform
(by as much as 50% as in the last row of Table 1) a
widely used linear model, even though the latter was
obtained using data registers 7 times longer. Research
currently under way seeks to apply this technique to
similar problems such as analysis and classification of
human activities.
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