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1. INTRODUCTION

The polynomial systems theory for time-invariant
linear differential and difference systems is a well-
established and efficient tool for control system
analysis and design (Blomberg and Ylinen, 1983).
The methodology utilises the algebraic properties
of polynomials with real or complex coefficients .
The theory is computational in nature, i.e. the
ring of polynomials over a field in an operator
normally satisfies a division algorithm which can
be used to find common factors and to manipulate
polynomial matrices into suitable canonical forms
in an algorithmic way. Thus all computations can
be implemented with a computer.

The ordinary polynomial systems theory has been
generalized to time-varying (Ylinen, 1980; Yli-
nen and Zenger, 1991) and distributed parame-
ter systems (Hätönen and Ylinen, 2002) and the
resulting theory is, in principle, similar to the
time-invariant one. The main differences are that
symbolic parameters and in time-varying case the
algebraic methodology related to noncommutative
skew polynomials are needed. Thus all computa-

tions must be done symbolically which in practice
limits the complexity of the problems to be han-
dled.

For nonlinear systems there does not exist any
similar machinery. Therefore their analysis and
design are most commonly based on local lin-
earization near to some nominal input-output
pair. This leads to linear but often time-varying
systems which can be used for analysis and design
by applying standard methods of linear systems
theory.

However, in many nonlinear problems there is
difficult or even impossible to find such a nom-
inal pair that the local linearization is accurate
enough. The nominal solution is not needed, if the
model is linearized in the neigborhood of the ac-
tual solution and the differentials of the variables
are used as local variables (Zheng et al., 2001).
The resulting time-varying models can be used for
analysis but for control design the differentials are
not suitable.

One way to obtain global linear models is to
use non-linear coordinate (or variable) transfor-



mations and the tools and methods of differential
geometry. This leads to relatively sophisticated
non-linear algebra and complicated calculations
(Isidori, 1995).

In this paper the idea to embed a non-linear
system globally into a more general, linear, time-
varying system is utilized. This is done by re-
placing the appropriate appearances of inputs,
outputs and their derivatives by free time-varying
parameters (Ylinen, 2002). The properties like
stability, controllability, etc. of the linear system
can be analysed using the skew polynomial meth-
ods and the structural results are applicable also
to the original non-linear system.

Feedback design can also be carried out by apply-
ing linear skew polynomial methods to the linear
model. The final non-linear feedback controller is
obtained by putting the input-output signals and
their derivatives back into the parameters. The
methodology is illustrated by examples.

2. EMBEDDING NONLINEAR SYSTEMS
INTO LINEAR SYSTEMS

Consider a nonlinear input-output (IO-) relation
S consisting of input-output pairs (u, y) satisfying
the equation

f(y(t), y(1)(t), ..., y(n)(t), u(t),

u(1)(t), ..., u(m)(t)) = 0 (1)

where t ∈ T
�
= time set = open interval ⊂ R,

u,y ∈ X �
= signal space ⊂ CT , u(i), y(i) are ith

derivates of u and y, respectively, and f is a func-
tion Cn+m+2 → C. R and C above denote the
real and complex numbers, respectively. In order
to present a real system, the model should be
realizable, which means that the knowledge of the
past of the system and the future input uniquely
determine the future output. This usually means
that in (1) the highest derivative y(n)(t) should be
uniquely solvable.

In what follows it will be shown that under some
smoothness properties the nonlinear model (1)
can be written to the form

n∑
i=0

ai(x(t))y(i)(t) =
m∑

i=0

bi(x(t))u(i)(t) (2)

with x(t) = (y(t), y(1)(t), ..., y(n)(t), u(t), u(1)(t),
..., u(m)(t)) or an appropriate sublist of it. Obvi-
ously at least some of the coefficients ai, bi will
be rational functions in time, so that the whole
model must also be extended to rational signals.

At first sight, the linearization above seems to be
only a trick because the model is still nonlinear.

Fig. 1. Embedding

However, in many analysis and design problems
the dependence of the parameters ai, bi on the
variables u, y can be relaxed, so that x in (2) is
replaced by a list ξ of independent time-varying
parameters resulting in

n∑
i=0

ai(ξ(t))y(i)(t) =
m∑

i=0

bi(ξ(t))u(i)(t) (3)

Let Sξ be the IO-relation determined by (3).
Varying ξ in a set Σ of possible parameter values
the original S(= Sx) can be embedded into

SΣ
�
= {((u, ξ), y)|(u, y) ∈ Sξ, ξ ∈ Σ} (4)

and S can be considered as its subset determined
by ξ = x. The situation is depicted by Fig.1.
Now the properties like stability, controllability,
etc. of each Sξ can be analyzed using the linear
theory, and if the properties are structural, i.e.
they are valid for all parameter values ξ, they are
directly applicable to S. Furthermore, feedback
and observer designs can be carried out by linear
methods.

3. TIME-VARYING POLYNOMIAL SYSTEMS

Time-varying linear differential input-output sys-
tems are usually described by differential equa-
tions of the form

n∑
i=0

ai(t)y(i)(t) =
m∑

i=0

bi(t)u(i)(t) (5)

where ai,bi ∈ K �
= coefficient space ⊂ CT .

If the signal space is closed with respect to dif-
ferentiation, these equations can be presented in
operator equation form

(
∑

aip
i)y = (

∑
bip

i)u (6)

where p
�
= d

dt

�
= the differentiation operator on X .

Under appropriate differentiability and closed-
ness properties of the coefficient space the oper-
ators a(p) =

∑
aip

i constitute the (noncommu-
tative) ring K[p; 1K , pK ] of skew polynomials (or



skew polynomial forms) with respect to addition∑
aip

i +
∑
bip

i =
∑
(ai + bi)pi and multipli-

cation (
∑
aip

i)(
∑
bip

i) =
∑
cip

i which can be
constructed using the equation

pb = 1K(b)p+ pK(b) = bp+ b(1) (7)

repeatedly. Here 1K
�
= the identity operator on

K and pK
�
= the differentiation operator on K.

Note that K can be considered as a subring of
K[p; 1K , pK ].

Let X be ‘sufficiently rich’ in the sense that
the powers p0, p1, p2, . . . are linearly independent
over K, i.e. the representation of each a(p) ∈
K[p; 1K , pK ] is unique and the degree deg a(p)

�
=

max{i|ai 	= 0} with deg 0 �
= −∞ is well-defined.

In order to obtain stronger algebraic structures,
the coefficient space K should have some addi-
tional properties. For instance, if K is a field,
i.e. each nonzero coefficient is pointwise invert-
ible, a(p) ∈ K[p; 1K , pK ] satisfies the left division
algorithm (LDA)

a(p) = q(p)b(p) + r(p), deg r(p) < deg b(p) (8)

K[p; 1K , pK ] satisfies also the right division algo-
rithm (RDA) defined correspondingly. Note that
there are very few suitable coefficient spaces which
are fields.

Suppose that K contains a unit element 1 (=
the constant parameter equal to 1). Let D be
a subset of K[p; 1K , pK ] closed under multipli-
cation and let 1 ∈ D. Suppose further that all
elements of D are nonzerodivisors (an element a
is a zerodivisor if ab = for some b 	= 0) and for
all c(p) ∈ K[p; 1K , pK ] , d(p) ∈ D there exist
b(p) ∈ K[p; 1K , pK ] , a(p) ∈ D such that

a(p)c(p) = b(p)d(p) (9)

Then D is a denominator set and K[p; 1K , pK ]
can be extended via embedding a(p) �→ a(p)/1
to the ring K[p; 1K , pK ]D of (left) fractions (or
quotients, rationals, rational forms)

b(p)/a(p)
�
= (a(p)/1)−1(b(p)/1)

b(p) ∈ K[p; 1K , pK ] , a(p) ∈ D (10)

Eq. (9) is needed for addition and multiplication
of fractions. If K is a field, the construction
of a(p), b(p) in (9) can be accomplished by the
repeated use of the RDA.

If K is not a field but an integral domain, i.e it
lacks zerodivisors (others than 0), then K∗ �

= K−
{0} is a denominator set in K and K can be

extended to its field of fractions KK∗
�
= F . K∗

is a denominator set also in K[p; 1K , pK ] , and
K[p; 1K , pK ]K∗ = F [p; 1F , pF ] , where 1F and pF

are natural extensions of 1K and pK , respectively.
Now F [p; 1F , pF ] satisfies the LDA and RDA.
Note that the elements of F can usually be iden-
tified with corresponding rational functions.

The signal space X is a left module both over K
and K[p; 1K , pK ]. When K is extended to KK∗ =
F , X has also to be extended via embedding
x �→ x/1 to the module XK∗ of (left) fractions

x/a
�
= (a/1)−1(x/1) (11)

over F or over F [p; 1F , pF ]. The original X can be
considered as a module over F or over F [p; 1F , pF ]
only if for each d ∈ K∗ the mapping x �→ dx is an
automorphism of X .
In order to maintain the possibility for vary-
ing the initial conditions of systems, the signal
space is supposed to be so ‘rich’ that it contains
all complex-valued solutions y to all equations
a(p)y = 0, with monic a(p) (the leading coef-
ficient equal to 1). A suitable signal space is for
instance the space of all complex-valued infinitely
continuously differentiable functions on an open
interval T of R denoted usually by C∞.

The space of complex-valued analytic functions
denoted here by A is an integral domain and sat-
isfies thus the assumptions for coefficients above.
In particular, in extension of A to AA∗ the
embeddings a �→ a/1 and x �→ x/1 are injec-
tions (monomorphisms) so that there are one-one
correspondences between the original signals and
coefficients and the extended ones. C∞ itself can-
not be considered as a module over AA∗ but it has
first to be extended to the space C∞

A∗ of ‘rational
signals’ x/a which then is a module (in fact a
vector space) over the field AA∗ . Note that AA∗

can be identified with the space of meromorphic
functions denoted here by M(Dieudonne, 1969).
Each b/a ∈ AA∗ defines a meromorphic function
m : T−{zeros of a} → C, t �→ b(t)/a(t) = (b/a)(t)
and for each meromorphic function m there exists
a fraction b/a ∈ AA∗ with which it can be defined.

Consider now an arbitrary IO-relation S ⊂ X ×
X and suppose that X is extended to a module
of fractions XD. If X cannot be identified with
XD, the problem is, whether the model S is still
applicable, and if not, whether there exists an
extended IO-relation SD in XD×XD such that the
composite relations satisfy j ◦ S = SD ◦ j , where
j is the embedding j : x �→ x/1. In (Hätönen and
Ylinen, 2002) the following proposition is given:
If every d(p) ∈ D is a monomorphism then j ◦
S = SD ◦ j if for every (u, y) ∈ X ×X there holds:
(u, y) ∈ S ⇐⇒ (u/1, y/1) ∈ SD.



4. NONLINEAR POLYNOMIAL SYSTEMS

Suppose now that the signal space X is restricted
to the space A of complex valued analytic func-
tions on T and that the function f : Cn+m+2 →
C in (1) is analytic. This implies that for an
arbitrary x ∈ An+m+2 the composite function
t �→ f(x(t)), is also analytic (Dieudonne, 1969).
This further means that f determines pointwise a
function An+m+2 → A , x �→ f(x(.)) , which can
notationally be identified with f .

Consider the signal space A as a module over
A[p; 1A, pA] and extend it to the module of
fractions AA∗ = M over A[p; 1A, pA]A∗ =
M[p; 1M, pM]. The function f can be extended
to a functionMn+m+2 → M pointwise by assign-
ment t �→ f(x1(t)/d1(t), ..., xn+m+2(t)/dn+m+2(t))
, t ∈ T − { zeros of d1, ..., dn+m+2}.
Each point in the range of f can be presented as a
linear combination over M of some arbitrary set
of elements. Thus

f(z/d) = f(x1/d1, ..., xn+m+2/dn+m+2)

=
n+m+2∑

i=1

ci(z/d)(xi/di) (12)

where z/d = (x1/d1, ..., xn+m+2/dn+m+2. Accord-
ing to the proposition above, the extension SA∗ of
S has to satisfy (u, y) ∈ S ⇐⇒ (u/1, y/1) ∈ SA∗ .
This condition is satisfied if SA∗ is chosen as

SA∗ = {(u/c, y/d)| f(y/d, ..., pn(y/d),

u/c, ..., pm(u/c)) = 0} (13)

Now, for pairs (u, y) = (u/1, y/1) Eq. (1) is
equivalent to a linear combination over M of
piy, i = 0, ..., n, piu, i = 0, ...,m

n∑
i=0

ai(x)piy −
m∑

i=0

bi(x)piu = 0 (14)

with x = (y, py, ..., pny, u, pu, ..., pmu). Finally
by relaxing the coefficients a time-varying linear
model

n∑
i=0

ai(ξ)piy =
m∑

i=0

bi(ξ)piu (15)

is obtained. Note that Eqs. (14,15) can always be
brought to equations over A by multiplying them
by a common denominator of the coefficients. The
problem is that there are infinitely many ways
to write the original equation (1) to the form
(15). The structure depends on the problem to be
studied using the model, but some general rules
can be given:
(i) The original structure i.e. the inputs and out-
puts as well as the order (the order of the highest

derivative of y) of the system should be main-
tained.
(ii) The behavior of the coefficients should be as
”constant” as possible, i.e. they should be con-
stants or analytic functions dependent only on low
order derivatives of u and y.
(iii) In control design, in order to avoid compli-
cated nonlinear differential equations, the coef-
ficients should preferably be dependent only on
outputs.

5. MULTIVARIABLE SYSTEMS

The approach can be generalized to multivari-
able systems. Then the linear IO-relations are
described by matrix equations over skew poly-
nomials. Most of the definitions and methods of
time-invariant systems are applicable (Blomberg
and Ylinen, 1983; Ylinen, 1980).

A multivariable, linear, time-varying IO-relation
S ⊂∈ X r × X s can be defined by the matrix
equation

[A(p)
...−B(p)]

[
y
u

]
= 0 (16)

where and A(p), B(p) are matrices with skew

polynomial entries. The matrix [A(p)
... − B(p)] is

called a generator for S. The generators can be
brought to equivalent forms by multiplying them
by unimodular matrices, i.e. invertible skew poly-
nomial matrices (Blomberg and Ylinen, 1983; Yli-
nen, 1980). In particular, elementary row and col-
umn operations can be used. Applying elementary
row operations and the LDA, skew polynomial
matrices can be brought to canonical forms, for
instance to Canonical Upper Triangular (CUT-
) form or to Canonical Row Proper (CRP-)
form(Blomberg and Ylinen, 1983; Ylinen, 1980).
In nonlinear case, all operations should be uni-
modular irrespective of the parameter values.

Example 1.Consider a nonlinear IO-relation de-
scribed by the model

y
(1)
1 (t) + y21(t) + y1(t)y

(1)
2 (t) = y1(t)u(t)

y1(t) + y
(1)
2 (t) + y1(t)y2(t) = u(t) (17)

Choosing ξ1 = y1 leads to the model[
p+ ξ1 ξ1p
1 p+ ξ1

] [
y1
y2

]
=

[
ξ1
1

]
u (18)

Using the elementary row operations a model of
CRP-form[

p −ξ21
1 p+ ξ1

] [
y1
y2

]
=

[
0
1

]
u (19)



and of CUT-form[
1 p+ ξ1
0 p2 + ξ1p+ ξ21 + ξ

(1)
1

] [
y1
y2

]
=

[
1
p

]
u (20)

are obtained. These correspond to the nonlinear
models

y
(1)
1 (t)− y21(t)y2(t) = 0

y1(t) + y
(1)
2 (t) + y21(t)y2(t) = u

(1)(t) (21)

y1(t) + y
(1)
2 (t) + y1(t)y2(t) = u(t)

y
(2)
2 (t) + y1(t)y

(1)
2 (t) + y21(t)y2(t) (22)

+y(1)1 (t)y2(t) = u(1)(t)

Note that all operations were unimodular irre-
spective of the parameter ξ1.

6. STABILITY AND CONTROLLABILITY

If an IO-relation S is globally asymptotically stable
then every pair (0, y) ∈ S is such that y(t)
approaches 0 when the time t approaches infinity.

The stability of S generated by [A(p)
... − B(p)]

usually cannot be tested from the ‘pointwise’
roots of detA(t)(p), where A(t)(p) denotes the
ordinary polynomial matrix obtained from A(p)
by replacing the coefficients by their values at time
t. The concepts of time-varying poles and zeros are
much more complicated than the time-invariant
ones (Zenger and Ylinen, 2002) .

In nonlinear case, the original nonlinear IO-
relation is stable if the relaxed linear IO-relation
is structurally stable. This is obvious because the
the feedback in Fig.1 only restricts the number
of pairs in the relaxed IO-relation. However, the
converse is not necessarily true.

Example 2. Let S be a bilinear IO-relation
determined by

y(1)(t) = u(t)y(t) (23)

and linearize it by ξ3 = u. This gives a linear
model

py = ξ3y (24)

which obviously means unstable behavior for some
parameters ξ3. However, the original model gives
py = 0, i.e. the model is stable but not asymptot-
ically stable. If the linearization is done by ξ1 = y

py = ξ1u (25)

the linear IO-relation is structurally stable imply-
ing correctly the stability of the IO-relation S.

In general, an IO-relation said to be controllable,
if all its modes can be affected by inputs. If S is

generated by [A(p)
...−B(p)] = L(p)[A1(p)

...−B1(p)]
with A1(p), B1(p), then S can be decomposed
to a parallel composition consisting of two IO-

relations S1 generated by [A1(p)
... − B1(p)] and

S2 generated by [L(p)A1(p)
... 0] (Blomberg and

Ylinen, 1983; Ylinen, 1980). If L(p) is not uni-
modular, S contains modes in S2 related to L(p),
which cannot be affected by the input. This means
that S is not controllable. Thus the IO-relation

S generated by [A(p)
... − B(p)] is controllable if

A(p), B(p) are left coprime, i.e. have no common
left divisors apart from unimodular ones.

In nonlinear case, the structural controllability of
the relaxed linear IO-relation implies the control-
lability of the original IO-relation but not vice
versa.

Example 3. Consider the model (23) in the pre-
vious example. The linearized model (24) is gen-

erated by [p− ξ3
... 0] and is obviously structurally

uncontrollable. However, the model (25) is gener-

ated by [p
... − ξ1] which implies controllability for

all parameter values except the trivial case ξ1 = 0.

Example 4. Consider the example presented in
(Zheng et al., 2001). Linearize the IO-relation
described by

y(2) − y(1) − (y(1))2 − y(1)u
y

− u(1) + u = 0 (26)

by ξ1 = y and ξ2 = y(1). This leads to the model

(ξ1p2 − (ξ1 + ξ2)p)y = (ξ1p− (ξ1 + ξ2))u (27)

Obviously, the corresponding IO-relation is gener-

ated by (ξ1p − (ξ1 + ξ2))[p
... − 1] so that it is not

controllable except in the trivial case ξ1 = 0.

7. FEEDBACK COMPENSATOR DESIGN

Consider the feedback composition depicted by
Fig.2 consisting of an IO-relation S1 to be com-
pensated and a feedback compensator S2 to be
designed so that the resulting composition is sta-
ble, robust, realizable etc. Let S1 be generated by

[A(p)
...−B(p)] = L(p)[A1(p)

...−B1(p)] (28)

where A1(p), B1(p) are left coprime. Then [A(p)
...−

B(p)] and [L(p)
... 0 ] are column equivalent, i.e.



Fig. 2. Feedback design

[A(p)
...−B(p)] = [L(p)... 0 ]

[
A1(p) B1(p)
Q3(p) Q4(p)

]
︸ ︷︷ ︸

Q(p)

(29)

where Q(p) is unimodular and can be constructed
by elementary column operations.

Let the feedback IO-relation S2 be generated by

[C(p)
...−D(p)]. Then the feedback composition is

generated by

[
A(p) B(p)
−D(p) C(p)

]
=

[
L(p) 0
T3(p) T4(p)

]

×
[
A1(p) B1(p)
Q3(p) Q4(p)

]
(30)

where T3(p), T4(p) are appropriate matrices
(Blomberg and Ylinen, 1983; Ylinen, 1980). The
dynamic behaviour of the system depends on
T4(p) and the uncontrollable part corresponding
to L(p). Thus the feedback compensator can be
designed starting from the first candidate Q(p) by
constructing first a suitable T4(p) and then a T3(p)
so that the resulting feedback compensator is real-
izable and the whole composition is robust against
the parameter variations. The construction can
be carried out step by step using elementary row
operations.

In nonlinear case the feedback composition should
be structurally stable in order to guarantee the
stability of the original nonlinear IO-relation.

Example 5. Consider again the system of Exam-
ple 1. Starting from the CRP-form (19) the first
candidate

Q(p) =


 p −ξ21 0
1 p+ ξ1 −1
1 0 0


 (31)

can be constructed using elementary column op-
erations. If p+α and p+ β are chosen as suitable
dynamics for the closed loop system then elemen-
tary row operations result in the generator


 p −ξ21 0
1 p+ ξ1 −1
αβ 2ξ1ξ

(1)
1 + βξ21 − ξ31 ξ21


 (32)

Thus the stabilizing controller is

u = −αβ/y1 − (2y(1)1 /y1 + β − y1)y2 (33)

The singularity at y1 = 0 is cancelled in the closed
loop. The robustness of this cancellation depends
on the system and controller realization.

8. CONCLUDING REMARKS

Linearization by relaxation of variables offers new
tools for nonlinear system theory. The main prob-
lems are the complicated calculations and the
choice of variables to be relaxed.
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