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1. INTRODUCTION

In a variety of control problems the number
of regulated variable outputs exceeds the num-
ber of control inputs. Such problems are impor-
tant in control of mechanical, electromechani-
cal and mechatronic systems termed “underac-
tuated” systems, see, e.g. (Jager and Nijmeijer
(Eds.), 2000). We will use the term “underactu-
ated” for general nonlinear systems with the num-
ber of regulated outputs exceeding the number of
inputs.

Typical examples of underactuated systems are
“cart-pendulum” and “Furuta pendulum” sys-
tems which have become recently benchmark sys-
tems for nonlinear control (Furuta et al., 1994;
Fradkov et al., 1995; Acosta et al., 2001; Aracil et
al., 2002).

In this paper a new method for control of un-
deractuated nonlinear systems is proposed based
on creating invariant surfaces for the system by
means of feedback and the application of the
speed-gradient method for control design. Creat-
ing an auxiliary invariant surface and controlling

the system to that surface as an intermediate
step for control design has been used in many
approaches, e.g. sliding modes (Utkin, 1992), syn-
ergetic control (Kolesnikov, 1987), backstepping
(Krstic et al., 1995), to mention a few. The novelty
of the proposed approach is the combination of
the created invariants for the fully actuated part
of the problem with other existing invariants into
a single goal function and the usage of the speed-
gradient method for control design. In Sec. 2 the
problem statement and control design method are
presented. In Sec. 3 a general result providing an-
alytical conditions for successful design (Theorem
1) is formulated and proven. In Sec.4 the method
is illustrated by a novel version of the bench-
mark ”cart-pendulum” example: stabilization of
the pendulum oscillations around the upper equi-
librium.

2. PROBLEM STATEMENT AND CONTROL
DESIGN

The class of systems considered in this paper is



ẋ1 = f1(x1, x2) + g1(x1, x2)u, (1)

ẋ2 = f2(x1, x2) + g2(x1, x2)u, (2)

where x1 ∈ Rn1 , x2 ∈ Rn2 , u ∈ Rm and fi, gi, are
smooth functions of corresponding dimensions.

Let the control goal be stabilization of output
function y = h1(x1) ∈ Rm at zero level: y(t) → 0
when t → ∞. Besides, boundedness of the tra-
jectories of the closed loop system is required.
Although no restrictions on the structure of sys-
tem (1)–(2) are imposed, the variables x1 and x2

play different roles (usually x2 represents the state
of the driving system) and will be treated in a
different way with respect to the goal by means of
the introduction of additional assumptions.

The first step of the proposed solution is to
perform a feedback transformation that makes
the goal function an invariant of the transformed
system. To this end the auxiliary goal

ẏ(t) ≡ 0, (3)

and the feedback transformation

u = uc(x1, x2) + v, (4)

are introduced, where uc(x1, x2) is a conservative
feedback –i.e., it makes the system conservative in
the sense that the goal (3) is achieved. Since

ẏ =

(

∂h1

∂x1

)

ẋ1 =

(

∂h1

∂x1

)

f1 +

(

∂h1

∂x1

)

g1u, (5)

fulfillment of (3) is ensured if the m × m-matrix
(∂h1

∂x1

)g1 is nonsingular and the conservative con-
trol is determined as follows

uc(x1, x2) = −
[(

∂h1

∂x1

)

g1

]−1 (

∂h1

∂x1

)

f1. (6)

However, nonsingularity of (∂h1

∂x1

)g1 is not strictly
necessary (see example in Sec. 4). It suffices that
a continuous function uc = uc(x1, x2) exists satis-
fying the identity

(

∂h1

∂x1

)

f1 +

(

∂h1

∂x1

)

g1u
c = 0. (7)

The transformed system (1)–(2) takes the form

ẋ1 = f̃1(x1, x2) + g1(x1, x2)v, (8)

ẋ2 = f̃2(x1, x2) + g2(x1, x2)v, (9)

where f̃1 = f1 + g1u
c, f̃2 = f2 + g2u

c, and v ∈ Rm

is a new control to be determined.

The next step of the design is the introduction of
an additional set of invariants for the free (v = 0)
transformed system (8)–(9); z = h2(x1, x2) ∈
Rn2 . The invariance of z means validity of identi-
ties

(

∂h2

∂x1

)

f̃1 +

(

∂h2

∂x2

)

f̃2 = 0, (10)

which are partial differential equations (PDE) for
a function h2(x1, x2). In what follows we assume
that PDE (10) are solvable.

Introduction of the additional invariant is an im-
portant step, aimed at introducing the additional
control goal

z(t) ≡ 0. (11)

The aim of this new goal is to link variables x2

to variables x1 in order to assure boundedness.
It should have a physical meaning and allow to
meet additional requirements to the system. For
example, in the cart-pendulum it might include
restrictions on the motion of the cart.

In order to design the control v(t) ensuring the
control goals (3) and (11), the speed-gradient
(SG) method (Fradkov, 1996; Fradkov and Pogrom-
sky, 1998) is employed. Introduce the goal func-
tion

Q(x1, x2) =
1

2
||y||2 +

1

2
zT Pz, (12)

where P = PT > 0 is a positive-definite symmet-
ric n2 × n2-matrix to be chosen later. Evaluating
the speed of changing Q(x1, x2) along trajectories
of the control system (8)–(9):

Q̇ = yT

(

∂y

∂x1

)

(

f̃1 + g1v
)

+ zT P ż, (13)

and using invariance of y,z, we obtain

Q̇ =

[

yT

(

∂y

∂x1

)

g1 + zT P

(

∂h2

∂x1

g1 +
∂h2

∂x2

g2

)]

v.

(14)
Calculating the gradient of (14) with respect to v,
we arrive at the speed-gradient algorithm

v =−Γ

[

gT
1

(

∂y

∂x1

)T

y

+

(

gT
1

(

∂h2

∂x1

)T

+ gT
2

(

∂h2

∂x2

)T
)

Pz

]

,(15)

where Γ = ΓT > 0 is a positive-definite gain
matrix. Applying control (15) ensures that Qt =
Q(x1(t), x2(t)) decreases monotonically, which is
important for achievement of the control goal
Qt → 0 as t → ∞, combining both goals y → 0
and z → 0. The conditions ensuring achievement
of the goal are given in the next section.

3. CONDITIONS OF THE CONTROL GOAL
ACHIEVEMENT

Let us formulate the result establishing conditions
for the control goal achievement.

Theorem 1. Let the equations (7) have solutions
for a continuous uc(x1, x2) and the PDE (10) have
solutions for a smooth h2(x1, x2) for all (x1, x2) ∈



Ω0, where Ω0 = {(x1, x2) : Q(x1, x2) ≤ Q0}, for
some Q0 > 0

A1. The solutions of the system (1), (2), (4), (7),
(10) and (15) with initial conditions in Ω0 are
well defined for all t ≥ 0.

Then the functions y(t), z(t) are bounded for t ≥ 0
and v(t) → 0 as t → ∞ for (x1(0), x2(0)) ∈ Ω0.

Let the additional assumptions hold:

A2. y(t) ≡ 0, z(t) ≡ 0 for all (x1(0), x2(0)) ∈ R0∩
Ω0, where R0 is the maximal invariant set
of the free system (8)–(9) (with v = 0),
contained in the set R ∩ Ω0, where R =
{(x1, x2) : Q̇ = 0}.

A3. The set Ω0 is bounded.

Then the goals y(t) → 0, z(t) → 0 are achieved
in the system (1), (2), (7), (10), (15) for all initial
conditions x1(0),x2(0) from Ω0.

Proof Relations Q(x1(0), x2(0)) ≤ Q0 and Q̇ ≤ 0,
(the later follows from the design of the control
algorithm) imply that (x1(t), x2(t)) ∈ Ω0 for all
t ≥ 0 (note that x1(t), x2(t) are well defined by
assumption of the theorem). Therefore, functions
y(t) and z(t) are bounded.

Since Q̇t = −Γ | v |2 (t), we have
∫

∞

0
| v |2 dt <

∞. The function v(t) is uniformly continuous in
t, due to its continuous dependence of y(t),z(t).
Now we obtain the first part of the theorem:
v(t) → 0 as t → ∞ from the Barbalat lemma
(see, e.g.(Fradkov et al., 1999)).

To prove the second part, note that since Qt is
monotonically decreasing there exists limt→∞ Qt =
Q∞. If Q∞ = 0, the theorem is proven. Let Q∞ >
0. Then, from A3, the trajectory (x1(t), x2(t))
possesses a limit point (x∗

1
, x∗

2
) and Q(x∗

1
, x∗

2
) =

Q∞ > 0, i.e. (x∗
1
, x∗

2
) ∈ R0 ∩ Ω0. Consider a new

trajectory with initial conditions (x∗
1
, x∗

2
). Then,

Q(x∗
1
, x∗

2
) = Q∞, which contradicts assumption

A2.

Hence Qt → 0 and y(t) → 0, z(t) → 0 as t → ∞.
The theorem is proven.

Remark 1. Assumption A1 is weaker than the
standard forward completeness condition, since it
only requires that the trajectories starting from
the set Ω0 are well defined. To verify A1 the
following sufficient condition is useful:

A1’. The right-hand sides of the equations (1), (2),
(4), (7), (10) and (15) are bounded in Ω0.

It is easy to see that A1’ implies A1. Indeed,
for any solution of the system (1), (2), (4), (7),
(10), (15) cannot leave Ω0 owing to the inequality
Q̇ ≤ 0 which holds as far as the solution is
well defined. Therefore, the right-hand sides are
bounded by A1’. On the other hand, a solution

of the differential system with bounded right-
hand sides cannot grow faster than linearly and,
therefore, cannot escape in a finite time. The
condition A1’ has natural physical interpretation:
all the forces are bounded when the energy-like
function Q is bounded.

Remark 2. To verify assumption A3, minimum-
phase-like properties of the system can be used.
Namely, A3 might be removed if the system
has so called BOBS-property with respect to
output (y, z). BOBS (bounded-output-bounded-
state) means that for bounded output functions
y(t), z(t) the state (x1(t), x2(t)) is also bounded.

4. EXAMPLE

In this section, an example that illustrates the
possibilities of the method stated in the previous
sections is included. The example chosen is the
well-known inverted pendulum on a cart. The
objective is to achieve an oscillatory movement
of the pendulum around the upper vertical. This
case was previously studied in (Aracil et al.,
2002) where a solution was proposed but not fully
justified.

The normalized equations of the pendulum, after
partial linearization, are given by

ξ̇1 = ξ2

ξ̇2 = sin ξ1 − cos ξ1u

ξ̇3 = u

(16)

where ξ1 and ξ2 are, respectively, the angular
position and velocity of the pendulum (ξ1 = 0
corresponds to the up-right position) and ξ3 is the
velocity of the cart. This system is an example of
a system affine in control of the type (1)-(2) with
x1 = [ξ1 ξ2]

⊤ and x2 = ξ3.

First, we consider the x1 subsystem, that is, the
single pendulum only, whose equations are given
by the two first ones of (16). The goal is that
this subsystem oscillates through a closed curve
y(ξ1, ξ2) = 0. From energetic considerations we
take

y(ξ1, ξ2) =
ξ2

2

2
− cos ξ1 + 1 − µ,

with µ > 0 (µ is the tuning parameter that
determines the amplitude of the oscillations). This
curve can be seen as a level curve of the virtual
energy of the system, considering this virtual
energy as the one that the system has if we invert
the gravity force.

Equation (7) is in this case 2ξ2 sin(ξ1) = ξ2 cos(ξ1)u
c,

which yields the conservative control law

uc = 2 tan ξ1. (17)

Remark 3. Notice that, in this case, (∂h1

∂ξ1

)g1(ξ1, ξ2)

is singular for ξ2 = 0, but the control law (17) is



well-defined for cos ξ1 6= 0 and ensures the equal-
ity ẏ = 0. Therefore, in this case, the singularity
of (∂h1

∂ξ1

)g1(ξ1, ξ2) does not affect the results (see
the choice of the set of valid initial conditions Ω
below).

The PDE (10) takes the form

ξ2

∂z

∂ξ1

− sin ξ1

∂z

∂ξ2

+ 2 tan ξ1

∂z

∂ξ3

= 0. (18)

A solution of this PDE for the region defined by
2 cos ξ1 − ξ2

2
> 0 is

z = ξ3 +
4Ψ(ξ1, ξ2)

√

2 cos ξ1 − ξ2

2

,

with

Ψ(ξ1, ξ2) = arctan
ξ2

√

2 cos ξ1 − ξ2

2

.

Applying SG method with Q = y2/2 + αz2/2 we
have

Q̇ = yẏ + αzż.

Thus,

Q̇ = y(ξ2ξ̇2 + sin ξ1ξ̇1) + αz
∂z

∂x1

ẋ1 + αz
∂z

∂x2

ẋ2

=−yξ2 cos ξ1v + αz

(

− ∂z

∂ξ2

cos ξ1 +
∂z

∂ξ3

)

v

On the other hand, we have

∂z

∂ξ2
= −

4

(

−2 cos ξ1 + ξ2

2
− Ψ(ξ1, ξ2)ξ2

√

2 cos ξ1 − ξ2

2

)

4 cos2 ξ1 − 4 cos ξ1ξ2

2
+ ξ4

2

,

and
∂z

∂ξ3

= 1.

Therefore, and renaming parameter Γ as γ since
in our case it is scalar, the control law results

u = 2 tan ξ1+γ

(

yξ2 cos ξ1 − αz

(

∂z

∂ξ2

cos ξ1 + 1

))

.

(19)

Let us check the conditions of the Theorem. The
set of initial conditions Ω0 should be within the
set D = {(ξ1, ξ2, ξ3) : cos ξ1 > 0, 2 cos ξ1 −
ξ2

2
> 0}. Within this set the right-hand sides

are well defined and bounded and assumption
A1 holds too in view of Remark 1. To fit the
relation Ω0 ⊂ D it suffices to choose the value
Q0 satisfying inequality 2Q0 < (1 − µ)2 which is
always possible for µ < 1. In this case variables
ξ1, ξ2 are bounded and z is bounded. Hence, ξ3 is
bounded too and the assumption A3 holds.

To verify condition A2 note that in the set R0

(i.e. for v = 0, u = uc) plant equations (17) read

ξ̇1 = ξ̇2, ξ̇2 = − sin ξ1, ξ̇3 = 2 tan ξ1. Therefore,
ξ2(t)2/2−cos ξ1(t) = const and y(t) = const = y∗.
Then Q̇ = 0 implies Q(t) = const and z(t) =
const = z∗. Let ξ2(t)2/2 − cos ξ1(t) = ν. Since
Q̇ = −γv2, the relation Q̇ = 0 also implies

2y∗ξ2 + 8αz∗

(

2

cos ξ1

+

√
−2ν − ξ2 arctan(ξ2

√
−2ν))

√

(−2ν)3

)

= 0. (20)

It is easy to see that ξ2(t) and the function in
the square brackets are linearly independent in
R0. Hence, the identity (20) implies identities
y∗ = 0, z∗ = 0, i.e. condition A2 is verified.

Remark 4. In order to weaken the restrictions for
the set of initial conditions Ω0, it is reasonable to
combine algorithm (15) with another algorithm
used at the first stage as a preliminary algorithm,
ensuring driving (ξ1(t), ξ2(t), ξ3(t)) into the set
Ω0. E.g. the standard SG-algorithm of energy
control for “lower” oscillation can be used:

u = γ2(H − H∗)ξ2 cos ξ1, (21)

where H is a kind of energy function and H∗ is
the desired energy level. As soon as the condition
(ξ1(t), ξ2(t), ξ3(t)) ∈ Ω0 is fulfilled, the control
should be switched to the algorithm (19).

Theorem 1 establishes convergence y(t) → 0, z(t) →
0. In order to evaluate transient processes and
performance of the closed loop system, a number
of computer simulations have been performed.
Figures 1 and 2 show the results of two of such
simulations. The parameter values are µ = 0.1,
γ = 10 and α = .01. The initial conditions in Fig.
1 are (ξ1, ξ2, ξ3) = (.01, 0, 0) while in Fig. 2 are
(1, 0, 0). In each figure the first graph presents the
projection of the trajectory in the ξ1 − ξ2 plane.
The second and third graphs show, respectively,
the time evolution of ξ1 and ξ3. It can be seen
that, in both simulations, the goal is achieved: the
desired oscillation is obtained for ξ1 and ξ2 (that
is, y → 0) and ξ3 is bounded. The last graph in
both figures shows the time evolution of the goal
function Q (amplified) and its components y and
z. It can be seen that these three functions go to
zero and, besides, Q is not increasing.

Figure 3 shows another simulation with initial
conditions outside Ω0 (the pendulum starts near
the downward position). Therefore, control law
(19) is not valid and other strategy has to be
applied. Following the ideas exposed in Remark
4, control law (21) has been used outside Ω0 with
H the physical energy of the pendulum subsystem
H = ξ2

2
/2 + cos ξ1 − 1 (the parameter values

are H∗ = 0, γ2 = 1 and µ = 0), while the
controller changes to (19) once the state of the
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Fig. 1. Results of a simulation with small initial
conditions

system enters Ω0. Furthermore, in order to make
the simulation more realistic, the control signal
has been saturated (|u| ≤ 1.5). The graphs in this
figure have the same meaning than in the previous
figures except the last one that presents the evo-
lution of the control signal u (notice the effect of
the saturation). Besides, the commutation curve
(the frontier of the set D) has been represented
(dashed curve) in the top graph together with the
evolution of the state.

In order to study the robustness of the obtained
law with respect to changes of the plant parame-
ters a new simulation is presented in Fig. 4. This
simulation corresponds to the same control law
(with the same parameters) controlling a system
in which the second Eq. of (16) is changed to

ξ̇2 =
1

1.2
(0.8 sin ξ1 − 0.8 cos ξ1u).

This model represents a pendulum with differ-
ent parameters values (after partial linearization)
from that used in the computation of the control
law. In the figure the dashed curves represent the
“nominal” behavior (same as Fig. 3), while the
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Fig. 2. Results of a simulation with large initial
conditions

solid curves represent the actual evolution. It can
be seen that the changes are not severe.

5. CONCLUSIONS

A new method for control of underactuated non-
linear systems is proposed, based on introducing
artificial invariants and using speed-gradient al-
gorithms. General statement concerning achieve-
ment of the control goal is formulated and proven.
The proposed approach is methodologically sim-
ple. Application of the proposed approach to sta-
bilization of cart-pendulum oscillations around
upper equilibrium confirms satisfactory transient
behavior of the closed loop system and good ro-
bustness properties.
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