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Abstract: This paper presents an alternative inference-defuzzification algorithm
for Takagi-Sugeno fuzzy systems that preserves local-model interpretation and
convexity properties. The linear model in the rule consequent is saturated outside
the core set of the antecedent membership functions. This allows the interpretation
of the consequents of fuzzy rules as a local linearization of the model restricted to
the subset where it is valid. The setting has readability advantages over Takagi-
Sugeno frameworks, and it is simpler that other interpolation proposals. Some
examples illustrate the approach. Copyright 2005 IFAC
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1. INTRODUCTION

One of the main successes of fuzzy models is the
capacity to express empirical knowledge in the
form of semantic rules. Every rule can be seen as a
specific and specialised subset of the global knowl-
edge. Then, if a fuzzy system is used for modelling,
a rule represents a submodel valid in some situ-
ations that are included as the antecedents. This
conduces to the local model approach: every rule
represents a local model that is valid in a subset
defined in the antecedents.

It is particularly important to select suitable cri-
teria to allow us to obtain the referred local
model partition, in particular, selecting an accu-
rate number of local models, and to define them
in the most important points in order to minimise
the total complexity (number of local models) of
the overall system description. There are a series
of tools able to help in those modelling tasks, such
as the ones discussed in (Dı́ez, 2003), including
widely-available software (Nelles et al., 2000).

In Takagi-Sugeno (T-S) fuzzy models, the sub-
model is represented by a parametric linear func-
tion of the input variables. The local models are
aggregated (interpolated) by means of a weighted
sum of the submodel outputs to obtain the global
model (Takagi and Sugeno, 1985). Ideally, those
submodels should resemble the local Jacobian lin-
earisation of the system to be modelled.

But, even though it has low computing require-
ments, the usual TS formula is a non convex in-
terpolation method and produces some unsuitable
behaviour in the interpolation area (Babuska et
al., 1996; Ario and Sala, 2004). The reason for this
behaviour is, as widely known, that the TS inter-
polator gives solutions out of the convex hull of the
local models in the overlapping regions: Suitable
accuracy in intermediate points in interpolation
of Jacobian-linearisation based models requires a
different “convex” interpolation technique.

The structure of the paper is as follows: first, the
rule interpolation problem in T-S fuzzy models



is analysed from the local modelling point of
view. Then, different approaches are reviewed and
finally, it is presented an alternative interpolating
expression that preserves convexity characteristics
of the underlying function.

2. INTERPOLATION IN T-S FUZZY
MODELS

A T-S fuzzy model of a system may be stated as
a set of rules in the form:

IF x is Al, THEN y = fl(x); l = 1 . . . m (1)

where m is the number of rules (number of local
models), Al is a fuzzy set defined on the domain
of x ∈ ℜn, with membership function µl(x), and
fl(x) represents the local model in the region
defined in the antecedent (fuzzy set Al). In T-S
it is used a local affine model for fl(x).

fl(x) = al
0

+
m∑

i=1

al
ixi (2)

The usual way of carrying out the aggregation
gives rise to the so-called Takagi-Sugeno (Takagi
and Sugeno, 1985; Wang, 1994)inference formula:

y(x) =

∑m

l=1
µl(x)fl(x)∑m

l=1
µl(x)

(3)

Usually, it is assumed that
∑

µl = 1 (add-1 fuzzy
partition) and it will be assumed on the sequel:

y(x) =

m∑

l=1

µlfl (4)

Now, let us focus on the analysis of the interpo-
lation. Suppose two adjacent local models, with
l = 1, 2, and for clarity we will use a SISO system
(n = 1).

Using the local model approach, every local model
should be valid inside the core (µl = 1) of its
associated fuzzy set, that is,

‖y(x) − fl(x)‖ < ǫ; ∀x ∈ core(Al) (5)

Outside the core set, the submodel is not longer
valid, and, usually, the error increases with the
distance to the core set. This idea is reflected in
the membership function shape, usually decreases
monotonically towards zero outside the core set.
So, for suitable readability, the two adjacent sub-
models, the associated membership functions do
overlap and no overlap exists in its core set (add-
1 hypothesis). The overlapping zone is:

B = {x; 0 < µ1(x)µ2(x) < 1} (6)

Then, the interpolation is done in B, but if 4
is used, local models are extrapolated outside
its validity region, and it may produce some

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Local model 1

Local model 2

Original model

TS model

Fig. 1. TS interpolation defects
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Fig. 2. TS interpretability drawbacks

unsuitable results as, for instance, those in Figure
1.

Conversely, if the model accurately fits a particu-
lar function, for instance by parameter identifica-
tion procedures, then the obtained fi may bear
no relationship to the local Jacobian-linearised
models (figure 2 depicts an example where the
intermediate curve can be obtained by a suitable
choice of membership function values to be ap-
plied to the “local” models 1 and 2). In fact, there
is a sort of conditioning issue if full freedom for
selection of µ is available in the modelling step, as
then the variations of µ may be the ones that ac-
tually account for the fit of f . This idea is the one
behind the bounding-polytopic interpretation of
fuzzy systems (Tanaka and Wang, 2001; Taniguchi
et al., 2001). This readability vs. accuracy trade-
off and related issues are discussed in (Abonyi et
al., 2000; Dı́ez et al., 2002).

3. OTHER INTERPOLATION METHODS

Due to this non-convex behaviour, different alter-
natives has been proposed to improve the interpo-
lation in the T-S framework. The properties that
should be met are (Babuska, 1998):



• The approximation error in the interpolation
set (B) must be better.

• The local gradients in B must be bounded by
the gradient in the adjacent local models.

• The surface must be sufficiently smooth,
with continuous derivatives until some pre-
specified order.

Some of the interpolation proposals are based
in methods of non-linear regression (Seber and
Wild, 1989):

Transition functions : The idea is to parame-
trize the transition between two adjacent mod-
els by an expression with the sign function.
Then, the sign function is substituted by a
continuous function, for instance a sigmoid, hy-
perbolic or tanh function,

Max-min smoothing : Connects two or more
adjacent hyperplanes by a smooth convex or
concave surface defined by a polynomial (Babuska,
1998),

Splines : polynomials of order n are used to
define the transition between the local models.
Continuity of order n − 1 is achieved.

Other methods are based on ad-hoc developments.
For instance, in (Ario and Sala, 2004), the first
step is to define a piecewise-linear limit function
Fpw, via the intersection of the local submodels.
Then, a softened version is calculated by means
of the calculation of a weighted mean of Fpw in a
ball centered in x. This can be seen as a rounded
surface in edges and vertexes.

All these methods suffer from a higher com-
putational complexity than 4, extra parameters
must be determined and, in the case of max-min
smoothing, different formulas must be used for
convex or concave surfaces. Other setups need a
suitable meshing of the input domain that can be
cumbersome to carry out with high-dimensional
data.

4. SATURATED LOCAL MODELS

An alternative and new method for interpolating
local models can be based on the idea that they
are only valid in its core set, and no extrapolation
must be done, but instead interpolation with some
saturated values.

This can be easily done for functions in one
variable. In this case, the local model fl = al

0
+

al
1
x is saturated outside the core set core(Al) =

[xl
min

, xl
max

] at the extreme values:

fl(x) = al
0

+ al
1
max(min(x, xmax), xmin) (7)

Then the interpolation is performed among con-
stants. The membership function shapes in B de-
termine the transition between the extreme val-

ues. For instance, for two adjacent local models
with x1

max
≤ x2

min
, the result is:

y(x) = µ1(x)f1(x
1

max
) + µ2(x)f2(x

2

min
) (8)

For higher input dimension, similar concepts can
be used, but it is slight more difficult: the core set
extreme values form a (n−1)-dimensional bound-
ary surface and there is not a unique solution for
saturating the local model.

The more intuitive way is to select the point
closest to x in this (n − 1)-dimensional surface
and calculate the local model at this point. There
are two cases to be discussed below.

4.1 Cartesian partition

This is the case when the membership functions
are separately defined for every input and then
they are combined in rule antecedents. For every
input, core intervals are obtained based on the
input membership function. Then, the Cartesian
product of these intervals results in the full n-
dimensional core sets, with its sides parallel to the
axes (boxes).

An extension for equation (7) can be written as:

fl(x) = al
0

+

n∑

i=1

al
i max(min(xi, x

l
i max

), xl
i min

)

(9)

4.2 Arbitrary partition

This case usually occurs as a result of an identifi-
cation process from experimental data (Babuska,
1998). N -dimensional membership functions are
obtained with different shapes and orientations.

The same idea can be used, i.e., choosing the near-
est point to the core set boundary, but in this case,
the computation of the referred boundary may be
more demanding, especially if the set has not a
regular shape (such as the one obtained from clus-
tering methods). In the case of clustering-related
results, approximations (using cluster covariance
concepts, for instance) or calculation of the convex
hull of a finite set of points above a particular
value of membership can be used.

4.3 Properties

The proposal under study has some interesting
properties:

• Interpolation is carried out with constant
values, so the properties of interpolation only
depends on the membership functions shape
and mutual overlapping: the global model is



differentiable if membership functions are so;
the local gradients are a weighted sum of the
fuzzy set membership gradients.

• If trapezoidal functions are used, a piece-
wise linear model is obtained. In the case
of high-dimensional input, a ruled surface is
obtained.

• For triangular fuzzy sets, the fuzzy model is
equivalent to a Mamdani type with single-
tons in the rule consequents.

• For Cartesian partitions the computational
overhead of this method is similar to the
classical T-S one.

In order to reduce the computational load in
the arbitrary partition case, the core set outlines
can be precalculated to improve the algorithm
efficiency.

5. EXAMPLES

In this section, some examples on one and two-
dimensional input spaces will be described, to
show the possible advantages of the proposed
approach.

5.1 Example 1: Single input.

Let us have a function:

f(x) =
1

0.1 · x + 0.01
(10)

from which two local linearised models are ob-
tained, centered at x1 = 0 and x2 = 1:

mi =
−0.1

(0.1 · xi + 0.01)2

ni =
1

0.1 · xi + 0.01
−

−0.1

(0.1 · xi + 0.01)2
· xi

fi(x) = mi · x + ni

i : 1, 2

The core region for each model is:

x ∈ [ai, bi] i : 1, 2

Where a1 = −0.04 b1 = 0.04 and a2 = 0.5 b2 = 4
The values of the function and its derivative at the
centroid points coincide with those from the local
models, so these can be properly interpreted as
the linearisations of the interpolant function. The
two membership functions are defined as shown in
figure 3.

Next step is saturating the output of the local
models.

xsati(x) = max(min(x, bi), ai) i : 1, 2

fsati(x) = fi(xsati(x)) i : 1, 2
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Fig. 3. The membership functions

The inference methodology is, then, the Takagi-
Sugeno framework

F (x) = µ1(x) · fsat1(x) + µ2(x) · fsat2(x) (11)
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Fig. 4. Interpolation result

The result is depicted in Figure 4 jointly with the
local models (f1 and f2) and the Takagi-Sugeno
inference. In the points with a low reliability for
all local models, the inference using the saturation
methodology improves significantly over the stan-
dard T-S approach. If the membership functions
were smoother, the resulting curve would also
have been so.

5.2 Example 2: 2 inputs, 1 output.

The system to be modelled is described by:

f(x, y) =
1

0.1 · x + 0.02 · y + 0.01
(12)

Let us have four local models (linearisations), at
points p1 = (0, 0), p2 = (1, 0), p3 = (0, 1) and
p4 = (1, 1)



mi =
−0.1

(0.1 · xi + 0.02 · yi + 0.01)2

pi =
−0.02

(0.1 · xi + 0.02 · yi + 0.01)2

ni =
1

0.1 · xi + 0.02 · yi + 0.01
− mi · xi − pi · yi

fi(x, y) = mi · x + pi · y + ni

i : 1..4

The core intervals for each model and variable are:

x ∈ [ai, bi] i : 1, 2

y ∈ [cj , dj ] j : 1, 2

Where a1 = −0.04, b1 = 0.04; c1 = −0.1, d1 =
0.1; a2 = 0.5, b2 = 4 and c2 = 0.4, d2 = 2.

The 2D fuzzy membership functions µi are plotted
in figure 5.
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Fig. 5. membership functions

Now, the saturated functions are:

xsati(x) = max(min(x, bi), ai) i : 1, 2

ysati(y) = max(min(y, di), ci) i : 1, 2

The proposed algorithm results in an interpolated
surface plotted in figure 6, clearly approaching the
intuitively expected shape of the original function,
in figure 8, in a better way than that from the TS
interpolation in figure 7.

6. CONCLUSIONS

In this paper, the local model approach has been
used to obtain a new interpolation method for
Takagi-Sugeno fuzzy systems. The proposal agrees
with the natural interpretation of local models:
they are only valid in the domain where they are
defined and model extrapolations must be avoided
because model imprecision.
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Fig. 6. Interpolation function
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This method can be used for models of any num-
ber of inputs and it is especially useful when
Cartesian partition is employed. Method proper-
ties has been analyzed and some examples are
drawn to show how it works.



Further work must be done to improve the effi-
ciency for arbitrary fuzzy sets partitions.
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