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1. INTRODUCTION

The problem of stabilization of state-space systems
is of both practical and theoretical importance and
has attracted the attention of many researchers in the
past years, a number of significant result on this issue
have been reported and different approaches have been
proposed in the literature (see, (Soh, 1985), (Trofino-
Neto, 1993)). However, as for singular systems (also
known as descriptor systems, implicit systems, gener-
alized state-space systems, differential- algebraic sys-
tems, semi-state systems), there are only a few pa-
pers dealing with the stabilization problem and results
on this topic are far fewer than those on state-space
systems((Dai, 1989),(Pandolfi, 1980) and (A, 1995)).
On the other hand, control of singular systems has
been extensively studied in the past years due to the
fact that singular system better describe physical sys-
tems than regular ones. Very recently, much atten-
tion has been paid to singular systems with time de-
lay. For the continuous case, numerical methods for
such systems were discussed in (see, (Ascher and
Petzold, 1995), (Campbell, 1980), (S. Xu, 2000) and
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(S. Xu and Lam, 2002)).
However, it is not easy to measure the state, so it is dif-
ficult to realize state feedback. Therefore, the problem
of designing an observer based feedback controller for
a linear plant to make the closed-loop system stable
has been discussed in many papers during the two
decades (Zhang M. and Y., 1998) , (Zidong W. and
Unbehauen, 2001) and (Su H. and J., 1998). At present
the observer design of linear time delay systems have
mainly two methods. One does include no delay infor-
mation in the observer (see, (Zhang M. and Y., 1998)
, (Zidong W. and Unbehauen, 2001) and (Su H. and
J., 1998)). The design of this observer is quite simple,
but this observer can’t reflect the message of the sys-
tem itself completely and the design of the controller
and observer are not separated. The second method
takes account of delay information in the observer
(see, (Su H. and J., 1998), (C. and C., 96)). This
observer can reflects completely the message of the
system itself and the design of the controller and that
of the observer are separated.

In this paper, we address the problem of stabiliza-
tion by state feedback control laws provided by an
observer. The sufficient conditions are developed for
checked by an iterative algorithm if this class of sin-



gular time-delay system is regular, impulse free and
stable. The paper is organized as follows. In section
2, the problem is stated and the required assumptions
are formulated. Section 3 presents the main results
obtained for the class of systems under study. Section
4 presents some numerical examples to show the use-
fulness of the proposed results.

2. PROBLEM STATEMENT AND
PRELIMINARIES

Consider the following uncertain singular systems
with multiple delays :

Eẋ(t) = Ax(t) + Adx(t − h) + Bu(t) (1)

wherex(t) is the state vector, inRn , h is the delay
of the system and the matricesA and Ad are of
appropriate dimension.

Definition 2.1. (Dai, 1989)

(1) The pair(E, A) is said to be regular ifdet(sE −
A) is not identically zero.

(2) The pair (E, A) is said to be impulse free if
deg(det(sE − A)) = rankE.

The singular delay system (1) may have an impulsive
solution, however the regularity and the absence of
impulses of the pair(E, A) ensure the existence and
uniqueness of an impulse free solution to this system,
which is shown in following lemma.

Lemma 2.1.Suppose the pair(E, A) is regular and
impulse free, then the solution to (1) exists and is
impulse free and unique on[0,∞)

In view of this, we introduce the following definition
for singular delay system (1).

Definition 2.2. (S. Xu and Lam, 2002)

• The singular delay system (1) is said to be regular
and impulse free if the pair(E, A) is regular and
impulse free.

• The singular delay system (1) is said to be stable
if for any ε > 0 there exists a scalarδ(ε) > 0
such that, for any compatible initial conditions
φ(t) satisfyingsup−τ≤t≤0 ‖ φ(t) ‖≤ δ(ε), the
solutionx(t) of system (1) satisfies‖ x(t) ‖≤ ε

for t ≥ 0. Furthermore

x(t) → 0 t → ∞

The following lemma is very useful for our develop-
ment in this paper.

Lemma 2.2.For anyz, y ∈ Rn and for any symmetric
positive-definite matrixX ∈ Rn×n :

−2z⊤y ≤ z⊤X−1z + y⊤Xy

Lemma 2.3.Consider the functionϕ : R+ → R. if
ϕ̇ is bounded on[0,∞), that is, there exists a scalar
α > 0 such that| ϕ̇(t) |≤ α for all t ∈ [0,∞), thenϕ

is uniformly continuous on[0,∞).

Lemma 2.4.Barbalat’s Lemma: Consider the function
ϕ : R+ → R. if ϕ is uniformly continuous and
∫ ∞

0
ϕ(s)ds < ∞, then

lim
t→∞

ϕ(t) = 0

In the rest of this paper the notation is standard unless
it is specified otherwise.L > 0 (L < 0) means that
the matrixL is symmetric and positive-definite matrix
(symmetric and negative-definite).

Remark 2.1.: Notation

• In the sequelSym {�} is defined as

Sym {X} = X + X⊤

for any matrixX
• for example, The matrixMe,x < 0 is equivalent

to

Mx < 0 and Me < 0

3. OBSERVER BASED CONTROLLER
SYNTHESIS

The goal of this section consists of establishing what
will be the sufficient conditions that can be used to
check whether or not the class of systems under study
is stable with an observer based controller. Consider
the system given by the following dynamics:

Eẋ(t) = Ax(t) + Adx(t − h) + Bu(t)

y(t) = Cx(t) (2)

The observer based controller is given as

u(t) = Kz(t) (3)

with K is the gain of the controller and the vector
z(t) is the state of the observer whose dynamics are
given by

Eż(t) = Az(t) + Adz(t − h) + Bu(t) + L (y(t) − Cz(t))(4)

whereL is the gain of the observer. Theorem 3.1
states the stability conditions of the system feedback
by an observer based controller.

Theorem 3.1.If there exist the matricesPx > 0,
Qx > 0, Wx > 0, Yx, Zx, Pe > 0, Qe > 0, We > 0,
Ye, Ze, S1 > 0 andS2 > 0 such that the following
hold:

{

E⊤Pe = P⊤

e E ≥ 0

E⊤Px = P⊤

x E ≥ 0
(5)

















Te =

[

Ze Ye

Y ⊤

e E⊤WeE

]

≥ 0Tx =

[

Zx Yx

Y ⊤

x E⊤WxE

]

≥ 0

(6)

M e =

[

(M e )
11

(M e )
12

hA⊤

0
We

(M e )⊤
12

−Ψx2
hA⊤

d
We

hWeA0 hWeAd −hWe

]

< 0M x =

[

(M x )
11

(M x )
12

(M x )⊤
31

(M x )⊤
12

−Ψ̄x2
P−1

x A⊤

d

(M x )
31

AdP−1
x (M x )

33

]

< 0

with

(M e )
11

= Sym {PeA − ReC} + Ψe1

(M e )
12

= PeAd − Ψx3

(M x )
11

= Sym
{

P−1

x A⊤ + R⊤

x B⊤
}

+ S−1

1
+ Ψ̄x1

(M x )
33

= −h−1 (Wx + WxS2Wx)−1

(M x )
31

=
(

AP−1

x + BRx

)

(M x )
12

= AdP−1

x − Ψ̄x3

Ψe1
= Qe + hZe + Y ⊤

e + Ye

+K⊤B⊤
(

S1 + hWx + hS−1

2

)

BK

Ψe2
= Qe, Ψe3

= Y ⊤

e ,

Ψx1
= Qx + hZx + Y ⊤

x + Yx

Ψx2
= Qx, Ψx3

= Y ⊤

x

Then system (2-3-4) is asymptotically stable.
To check the result stated by Theorem 3.1 we use the
following iterative algorithm

Algorithm

1. Solve the LMI M x < 0

for the decision variablesP−1
x , Rx = KP−1

x , Qx,
Zx, Yx, S−1

1
andW −1

x = (Wx + WxS2Wx)−1,
2. ChooseWx > 0 in such a way thatTx ≥ 0

S2 = W−1
x (W x − Wx)W−1

x > 0

hold
3. Solve the LMI problemM e < 0Te ≥ 0

for the decision variablesPe, Re = PeL, Qe, Ze,
Ye.

Proof of Theorem 3.1

First, let the observer error be given as

e(t) = x(t) − z(t)

which leads the observer error dynamics as

Eė(t) = A0e(t) + Ade(t − h) (7)

with

A0 = (A − LC)

Note that the system dynamics can be rewritten as

Eẋ(t) = Ax(t) + Adx(t − h) + BKx(t) − BKe(t)

The system and the observer are given by

Eẋ(t) = Acx(t) + Adx(t − h) − BKe(t)

Eė(t) = A0e(t) + Ade(t − h) (8)

with Ac = A + BK

We recall that regularity and absence of impulses of
the pair(E, A) implies that there exist two invertible
matricesG andH ∈ Rn×n such that (Dai, 1989)

Ē = GEH =

[

Ir 0
0 0

]

Āc,0 = GAc,0H =

[

Ax,e 0
0 In−r

]

(9)

Ād = GAdH =

[

Ad11
Ad12

Ad21
Ad22

]

B̄ = GB C̄ = CH

whereIr ∈ Rr×r andIn−r ∈ Rn−r×n−r are identity
matrices.
This transformation is applied to equations of theorem
3.1 with

P̄x,e = G−⊤Px,eH W̄x,e = G−⊤Wx,eG−1

Q̄x,e = H⊤Qx,eH Z̄x,e = H⊤Zx,eH (10)

R̄x = RxG−1 Ȳx,e = H⊤Yx,eH

Noting the expression of̄E in (9) and using (5),
we can deduce that̄Px11,e11

= P̄⊤
x11,e11

≥ 0 and
P̄x12,e12

= 0, thereforeP̄x,e reduces to

P̄x,e =

[

P̄x11,e11
0

P̄x21,e21
P̄x22,e22

]

(11)

Now, let

ζx(t) = H−1x(t) ζe(t) = H−1e(t) (12)

whereζx1,e1
∈ Rr , ζx2,e2

∈ Rn−r . Using (9), the
singular delay system (8) can be written as

ζ̇x1
(t) = Āxζx1

(t) + Ād11
ζx1

(t − h) + Ād12
ζx2

(t − h)

−B̄1K̄1ζe1
(t) − B̄1K̄2ζe2

(t)

0 = ζx2
(t) + Ād21

ζx1
(t − h) + Ād22

ζx2
(t − h)

−B̄2K̄1ζe1
(t) − B̄2K̄2ζe2

(t) (13)

ζ̇e1
(t) = Āeζe1

(t) + Ād11
ζe1

(t − h) + Ād12
ζe2

(t − h)

0 = ζe2
(t) + Ād21

ζe1
(t − h) + Ād22

ζe2
(t − h)

In order to investigate the stability of the closed loop
system (8), let us consider the Lyapunov functional
candidate :

V (ζxt, ζet) = V1(ζxt, ζet) + V2(ζxt, ζet) + V3(ζxt, ζet)



+V4(ζxt, ζet)

with

V1(ζxt, ζet) = ζe(t)⊤P̄⊤

e Ēζe(t) + ζx(t)⊤P̄⊤

x Ēζx(t)

V2(ζxt, ζet) =

t
∫

t−h

t
∫

s

ζ̇e(τ)⊤Ē⊤W̄eĒζ̇e(τ)dτds

+

t
∫

t−h

t
∫

s

ζ̇x(τ)⊤Ē⊤W̄xĒζ̇x(τ)dτds

V3(ζxt, ζet) =

t
∫

t−h

ζe(s)
⊤Q̄eζe(s)ds

+

t
∫

t−h

ζx(s)⊤Q̄xζx(s)ds

V4(ζxt, ζet) =

t
∫

0

τ
∫

τ−h

[

ζe(τ)⊤ ζ̇e(s)⊤
]

[

Z̄e Ȳe

Ȳ ⊤

e Ē⊤W̄eĒ

][

ζe(τ)

ζ̇e(s)

]

dsdτ

+

t
∫

0

τ
∫

τ−h

[

ζx(τ)⊤ ζ̇x(s)⊤
]

[

Z̄x Ȳx

Ȳ ⊤

x Ē⊤W̄xE

][

ζx(τ)

ζ̇x(s)

]

dsdτ

therefore, the first derivative of the Lyapunov func-
tional candidate is :

V̇ (ζxt, ζet) ≤ ζe(t)⊤
(

P̄⊤

e Ā0 + Ā⊤

0
P̄e + K̄⊤B̄⊤S1B̄K̄

)

ζe(t)

+2ζe(t)
⊤P̄⊤

e Ādζe(t − h)

+ζe(t)
⊤Q̄eζe(t) − ζe(t − h)⊤Q̄eζe(t − h)

+h
(

Ā0ζe(t) + Ādζe(t − h)
)⊤

W̄e

×
(

Ā0ζe(t) + Ādζe(t − h)
)

+hζe(t)
⊤Z̄eζe(t) + 2ζe(t)

⊤Ȳe (ζe(t) − ζe(t − h))

+ζx(t)⊤
(

P̄⊤

x Āc + Ā⊤

c P̄x + P̄⊤

x S−1

1
P̄x

)

x(t)

+2ζx(t)⊤P̄⊤

x Ādζx(t − h)

+ζx(t)⊤Q̄xζx(t) − ζx(t − h)⊤Q̄xζx(t − h)

+h
(

Ācζx(t) + Ādζx(t − h) − B̄K̄ζe(t)
)⊤

W̄x×

(

Ācζx(t) + Ādζx(t − h) − B̄K̄ζe(t)
)

+hζx(t)⊤Z̄xζx(t) + 2ζx(t)⊤Ȳx (ζx(t) − ζx(t − h))

Note that the underlined expression above can be
bounded as follows

(

Ācζx(t) + Ādζx(t − h) − B̄K̄ζe(t)
)

⊤

W̄x ×
(

Ācζx(t) + Ādζx(t − h) − B̄K̄ζe(t)
)

=
(

Ācζx(t) + Ādζx(t − h)
)⊤

W̄x ×
(

Ācζx(t) + Ādζx(t − h)
)

−2
(

Ācζx(t) + Ādζx(t − h)
)⊤

W̄x

(

B̄K̄ζe(t)
)

+
(

B̄K̄ζe(t)
)⊤

W̄x

(

B̄K̄ζe(t)
)

and using lemma 2.1, we deduce easily what follows
: ∃S2 > 0 such as :

≤
(

Ācζx(t) + Ādζx(t − h)
)

⊤

W̄x

(

Ācζx(t) + Ādζx(t − h)
)

+
(

Ācζx(t) + Ādζx(t − h)
)

⊤

W̄xS2W̄x

×
(

Ācζx(t) + Ādζx(t − h)
)

+
(

B̄K̄ζe(t)
)

S−1

2

(

B̄K̄ζe(t)
)

+
(

B̄K̄ζe(t)
)⊤

W̄x

(

B̄K̄ζe(t)
)

Finally, the first derivative of the Lyapunov functional
candidate is

V̇ (ζxt, ζet) ≤ 2ζe(t)⊤
(

P̄⊤

e Ād − Ψ̄e3
+ hĀ⊤

0
W̄eĀd

)

ζe(t − h)

+ζe(t)⊤
(

P̄⊤

e Ā0 + Ā⊤

0 P̄e + Ψ̄e1
+ hĀ⊤

0 W̄eĀ0

+K̄⊤B̄⊤
(

S1 + hW̄x + hS−1

2

)

B̄K̄
)

ζe(t)

+ζe(t − h)⊤
(

−Ψ̄e2
+ hĀ⊤

d W̄eĀd

)

ζe(t − h)

+2ζx(t)⊤
(

P̄⊤

x Ād − Ψ̄x3

+hĀ⊤

c

(

W̄x + W̄xS2W̄x

)

Ād

)

ζx(t − h)

+ζx(t)⊤
(

P̄⊤

x Āc + Ā⊤

c P̄x + Ψ̄x1

+ hĀ⊤

c

(

W̄x + W̄xS2W̄x

)

Āc

+P̄⊤

x S−1

1
P̄x

)

ζx(t)

+ζx(t − h)⊤
(

−Ψ̄x2

+ hĀ⊤

d

(

W̄x + W̄xS2W̄x

)

Ād

)

ζx(t − h)

and using the lemma 2.2, and assuming that
{

hĀ⊤

d

(

W̄x + W̄xS2W̄x

)

Ād − Ψ̄x2
< 0

hĀ⊤

d W̄eĀd − Ψ̄e2
< 0

(14)

we deduce the following expression

V̇ (ζxt, ζet) ≤ ζe(t)⊤
{

(

P̄⊤

e Ād − Ψ̄e3
+ hĀ⊤

0
W̄eĀd

)

×

(

Ψ̄e2
− hĀ⊤

d W̄eĀd

)−1

×
(

P̄⊤

e Ād − Ψ̄e3
+ hĀ⊤

0 W̄eĀd

)

⊤

+
(

P̄⊤

e Ā0 + Ā⊤

0
P̄e + Ψ̄e1

+ hĀ⊤

0
W̄eĀ0

+K̄⊤B̄⊤
(

S1 + hW̄x + hS−1

2

)

B̄K̄
)

}

ζe(t)

ζx(t)⊤
{

[

P̄⊤

x Ād − Ψ̄x3

+hĀ⊤

c

(

W̄x + W̄xS2W̄x

)

Ād

]

×
(

Ψ̄x2
− hĀ⊤

d

(

W̄x + W̄xS2W̄x

)

Ād

)−1

×

×
[

P̄⊤

x Ād − Ψ̄x3
+ hĀ⊤

c

(

W̄x + W̄xS2W̄x

)

Ād

]⊤

+
(

P̄⊤

x Āc + Ā⊤

c P̄x + Ψ̄x1

+ hĀ⊤

c

(

W̄x + W̄xS2W̄x

)

Āc

+P̄⊤

x S−1

1
P̄x

)

}

ζx(t)

The expression above can be written in a compact
form as follows

V̇ (ζt) ≤ ζ⊤x (t)(Mx11
− Mx12

M−1

x22
M⊤

x12
)ζx(t)

+ζ⊤e (t)(Me11
− Me12

M−1

e22
M⊤

e12
)ζe(t) (15)



with

Mx11
= Ā⊤

c P̄x + P̄⊤

x Āc + hA⊤

c

(

W̄x + W̄xS2W̄x

)

Āc

+P̄⊤

x S−1

1
P̄x + Ψ̄x1

Mx12
= P̄⊤

x Ād − Ψ̄x3
+ hĀ⊤

c

(

W̄x + W̄xS2W̄x

)

Ad

Mx22
= hĀ⊤

d

(

W̄x + W̄xS2W̄x

)

Ād − Ψ̄x2

Me11
= Ā⊤

0
P̄e + P̄⊤

e Ā0 + hĀ⊤

0
W̄eĀ0 + Ψ̄e1

Me12
= P̄⊤

e Ād − Ψ̄e3
+ hĀ⊤

0
W̄eĀd

Me22
= hĀ⊤

d W̄eĀd − Ψ̄e2

It comes then thatV̇ (ζt) is definite negative if
(

Mx11,e11
− Mx12,e12

M−1
x22,e22

M⊤
x12,e12

)

< 0 which as-
sociated with (14) can be expressed as

Mx =

[

Mx11
Mx12

M⊤

x12
Mx22

]

, Me =

[

Me11
Me12

M⊤

e12
Me22

]

Notice that matrixMe andMx can be expressed as
follows:

Me =

[

Ā⊤

0
P̄e + P̄⊤

e Ā0 + Ψ̄e1
P̄⊤

e Ād − Ψ̄e3

(P̄⊤
e Ād − Ψ̄e3

)⊤ −Ψ̄e2

]

+

[

hĀ⊤

0
W̄e

hĀ⊤

d
W̄e

]

(hW̄e)
−1 [ hW̄eĀ0 hW̄eĀd ] < 0

Mx =

[

Ā⊤
c P̄x + P̄⊤

x Āc + P̄⊤
x S−1

1
P̄x + Ψ̄x1

(P̄⊤
x Ād − Ψ̄x3

)⊤

P̄⊤
x Ād − Ψ̄x3

−Ψ̄x2

]

+

[

Ā⊤
c

Ā⊤

d

]

(h
(

W̄x + W̄xS2W̄x

)

) [ Āc Ād ] < 0

We taking into account ofWe = αPe for have a LMI
on the matrixM e .
Using the Schur complement,Me andMx are negative
definite if and only if we haveM e =

[

Ā⊤

0
P̄e + P̄⊤

e Ā0 + Ψ̄e1
P̄⊤

e Ād − Ψ̄e3

(P̄⊤
e Ād − Ψ̄e3

)⊤ −Ψ̄e2

hαP̄eĀ0 hαP̄eĀd

hĀ⊤

0
αP̄e

hαA⊤

d
P̄e

−hαP̄e

]

< 0M̂ x =

[

Ā⊤
c P̄x + P̄⊤

x Āc + P̄⊤
x S−1

1
P̄x + Ψ̄x1

(P̄⊤
x Ād − Ψ̄x3

)⊤

Āc

P̄⊤
x Ād − Ψ̄x3

Ā⊤
c

−Ψ̄x2
Ā⊤

d

Ād −
(

hW̄x + hW̄xS2W̄x

)−1

]

< 0

Pre- and post-multiplŷM x byJx = diag [P−1
x P−1

x I ] it comes thatM̂ x is
negative definite if and only if we haveM x =

[

P̄−⊤
x Ā⊤

c + ĀcP̄−1
x + S−1

1
+ Ψ̃x1

(ĀdP̄−1
x − Ψ̃x3

)⊤

ĀcP−1
x

ĀdP̄−1
x − Ψ̃x3

P̄−⊤
x Ā⊤

c

−Ψ̃x2
P̄−⊤

x Ā⊤

d

ĀdP−1
x −h−1

(

W̄x + W̄xS2W̄x

)−1

]

< 0

with
Ψ̃x1,2,3

= P̄−⊤

x Ψ̄x1,2,3
P̄−1

x

It follows from inequality (15) thaṫV (ζt) < 0 and

λ1 ‖ ζx1,e1
(t) ‖2 −V (ζ0) (16)

≤ ζx,e(t)
⊤diag

(

P̄x, P̄e

)

diag
(

Ē, Ē
)

ζx,e(t)

+

t
∫

t−h

t
∫

s

ζ̇x,e(τ)⊤diag
(

Ē, Ē
)

×

diag
(

W̄x, W̄e

)

ζ̇x,e(τ)dτds

+

t
∫

t−h

ζx,e(s)
⊤diag

(

Q̄x, Q̄e

)

ζx,e(s)ds

+hζx,e(t)
⊤diag

(

Z̄x, Z̄e

)

ζx,e(t)

+2ζx,e(t)⊤diag
(

Ȳ ⊤

x , Ȳ ⊤

e

)

t
∫

t−h

ζ̇x,e(s)ds

+

t
∫

t−h

ζ̇x,e(τ)⊤diag
(

Ē, Ē
)

×

(

W̄x, W̄e

)

ζ̇x,e(τ)dτ − V (ζx,e(0))

= V̇ (ζx,e(t)) ≤ −λ2

t
∫

0

‖ ζx,e(s) ‖
2 ds

≤ −λ2

t
∫

0

‖ ζx1,e1
(s) ‖2 ds (17)

with ζx,e(t) = [ ζ⊤x ζ⊤e ]⊤ λ1 = λmin{Px11
, Pe11

} > 0

λ2 = −λmax

([

Mx OO Me

])

> 0

Taking (16) into account, we deduce that

λ1 ‖ ζx1,e1
(t) ‖2 +λ2

t
∫

0

‖ ζx1,e1
(s) ‖2 ds ≤ V (ζ0)

such that

‖ ζx1,e1
(t) ‖2≤ c1 and

t
∫

0

‖ ζx1,e1
(s) ‖2≤ c2 (18)

where
c1 =

1

λ1

V (ζ0) c2 =
1

λ2

V (ζ0) (19)

Thus,‖ ζx1
(t) ‖ and‖ ζe1

(t) ‖ are bounded and from
(13) it comes out thatd

dt
‖ ζx1,e1

(t) ‖2 is bounded
too. By Lemma 2.3, we have that‖ ζx1,e1

(t) ‖2 is
uniformly continuous. Therefore, taking account of
(18) and using Lemma 2.3 we obtain that

lim
t→∞

‖ ζx1
(t) ‖= 0 lim

t→∞

‖ ζe1
(t) ‖= 0 (20)

Now we have to state the same behaviour forζx2
(t)

and ζe2
(t) respectively. To do so, note that for any

t > 0, there exists a positive integerk such thatkh̄ −
h̄ ≤ t < kh̄, we have

ζx2
(t) = B2K1ζe1

(t) −

k
∑

i=1

(−Ad22
)i−1

[

Ad21
ζx1

(t − ih)



+(B2K1Ad22
+ iB2K2Ad21

)ζe1
(t − ih)

]

−(−Ad22
)k [B2K1ζe1

(t − kh)

−kB2K2ζe2
(t − kh) + ζx2

(t − kh)] (21)

ζe2
(t) = −

k
∑

i=1

(−Ai−1

d22
Ad21

ζe1
(t − ih))

+(−Ad22
)kζe2

(t − kh)

Since‖ ζx1
(t) ‖ and‖ ζe1

(t) ‖ are bounded and if

ρ(Ad22
) < 1 (22)

then it comes out that

lim
t→∞

‖ ζx2
(t) ‖= 0 lim

t→∞

‖ ζe2
(t) ‖= 0 (23)

Thus, the closed-loop system (1) is stable.

Remark 3.1.The results of Theorem (3.1) are only
sufficient and therefore if these conditions are not
verified we can’t claim that the system under study is
not stable.

Example 3.1.In this example, we consider that the
singular system under study has one time-delay. Let
us assume that the dynamics are described by the
following matrices:

A0 =

[

−1 0.0
−0.01 1

]

A1 =

[

−1 0
−1 −1

]

α = 0.001

E =

[

1 0
1 0

]

B =

[

0
1

]

C = [ 0 1 ] (24)

Applying Theorem 3.1 for the overall system leads us
to state that this system remains stable for any delay
h ≤ h̄ = 1.15s with

K = [ 37.0734 28.0279 ] L =

[

−0.2206
6.7031

]

4. CONCLUSION

In this paper, we have discussed the design of observer-
based feedback controller for singular time-delay sys-
tems. Delay-dependent sufficient conditions have been
developed to check whether a system of this class of
is stable or unstable, a state feedback controller with
consequent parameters has been used to stabilize the
system. The LMI technique is used in all the develop-
ment. We provided an iterative algorithm to solve the
feasibility of the obtained LMI’s. Finally, a numerical
example is given to illustrate the validity of the design
method.
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