

FORMAL MODELLING OF INDUSTRIAL DISTRIBUTED CONTROL SYSTEMS

* M. Marcos, E. Estévez

*Departamento de Ingeniería de Sistemas y Automática,
Universidad del País Vasco, UPV/EHU (Spain)

Abstract: Industrial Process Measurement and Control Systems (IPMCS) are used in most
of the industrial sectors to achieve production improvement, process optimisation and
time and cost reduction. Integration, reuse, flexibility and optimisation are demanded to
adapt to a rapidly changing and competitive market. There is also a growing requirement
that all software tools that support the different phases of the development process
(design, configuration, management) can be integrated as well. Thus, a consolidation of
modelling methodologies for achieving this goal is needed. This paper presents a formal
modelling for IPMCS that captures all aspects of the system to design in terms of
functionality and implementation (hardware and software). The modelling language
(eXtensible Markup Language, XML) allow to implement model validation as well as to
easily transform information coming from / going to different software tools, achieving
tool integration. Copyright © 2005 IFAC

Keywords: distributed control systems, formal modelling, programmable logic
controllers, industrial applications.

1. INTRODUCTION

Nowadays most of the industrial sectors use
Programmable Logic Controllers (PLCs) to achieve
the control of their productive systems. In the last
years, technological advances in these controllers
allow the production improvement, process
optimisation and time and cost reduction. The
application of standards has also a great force in the
fast growth of the control and instrumentation of
industrial processes. The International
Electrotechnical Commission has published several
standards promoting interchangeable and open
systems. The IEC 61131-3 standard deals with the
software model and programming languages for
IPCMS. The evolving standard IEC 61499 standard
(IEC, 2000) focuses on distributed IPMCS based on
an extended definition of Function Blocks and it
provides the requirements for software tools to
support the specification, analysis and validation of
Distributed IPMCS as well as the configuration,
implementation, operation and maintenance of such
systems. However, as fast as industry reaches a
greater maturity level, a consolidation of the
modelling methodologies becomes necessary.
Therefore, modelling languages, that allow system
description and definition before their construction,

must be used. The modelling methodology should
allow to model the system from different viewpoints
as well as to involve the entire system lifecycle.

In this sense, PLCopen (PLCopen, 2003) is a vendor-
and product-independent worldwide association
whose mission is to be the leading association
resolving topics related to control programming to
support the use of international standards in this
field. For this, PLCopen has several technical and
promotional committees (TCs). In particular, TC6 for
XML had as original goal to define an open interface
to communicate different programming tools. But,
from the beginning, TC6 members realized that
having XML as a common road, other tools, like
simulation and modelling tools, or documentation
and version control tools could be integrated.

Some attempts have been done by different authors
towards the use of well known modelling languages
for designing IPMCS. Bonfé and Fantuzzi (2000),
Heverhagen and Tracht, (2001) propose the use of
UML (Jacobson, et al., 1992), (Rumbaugh, et al.,
1996) for specifying components of control systems
following the IEC 61131-3 standard. But they only
model the implementation issues for this software
model and their goal is to generate source code.
There are other works that focus on the design of

applications using the IEC 61131 standard. Gonzalez
et al. (2003) propose a methodology for the analysis
and modelling of discrete event systems applied to
the development of the control logic based on the
IEC 61131-3 standard. In Kandare (2001), a
graphical tool that generates IEC 61131-3 structured
text (ST) code is described.

On the other hand, work is being done towards the
design and development of a framework to support
the engineering process of distributed IPMCS
(Thramboulidis and Tranoris 2001, Thramboulidis
2003). The design is object oriented and uses UML
to define a 4-layered architecture for designing such
type of systems.

Previous works of authors Marcos et al. (2004)
propose a model for industrial distributed control
systems also using UML and the Model Driven
Architecture (MDA) methodology (Millar and
Mukerji, 2001), proposed by OMG (OMG 2002).
Following the MDA concept, the distributed IPMCS
is modelled in two parts that are complimentary: the
functionality and the implementation of this
functionality following the IEC 61131-3 standard
software model. The model is completed by mapping
the functionality to the concrete IEC 61131-3
architecture. The main problem that arises in this
UML-based modelling is to check the consistence
(the definition of the parts must follow a strict formal
model) and the coherence of the overall system being
modelled (the parts, functionality and hardware and
software architecture, refers to the same industrial
distributed control system). The modelling language
must offer tools to define formal models and to
perform syntactic and semantic analysis of model
instances (applications). The current version of UML
does not support this.

This paper presents a formal modelling for
distributed IPMCS using XML as modelling
language, given that XML offers powerful
technologies for defining formal grammars and
performing the necessary coherence and consistence
analysis. This model of an application will be
generated / consumed in part by different software
tools involved in the life cycle of the applications.

The layout of the paper is as follows: section 2
briefly describes the modelling requirements from
which arise the requirements that must be met by the
modelling language. Section 3 presents a formal
modelling for distributed IPCS using XML, the
modelling language selected. Finally, section 4
illustrates the proposed modelling methodology in an
industrial application: a Heat Treatment Line.

2. MODELLING OF DISTRIBUTED IMPCS

Usually, an important part of the control system
corresponds to the modules that control the basic
mechanical components. In addition, different
communication modules exist between the part
which controls the basic components and the main

plant controllers. For this reason, the definition of the
system in a modularized and hierarchical way
presents clear advantages. Within a hierarchical
design, each module represents the control of a set of
lower level components.

In order to feed documentation and configuration
tools with the information from the distributed
IPMCS system model, other independent part of this
model should inform about the hardware components
that are used to implement the system (controllers
e.g. PLCs, networks, industrial buses, etc.). This part
of the model captures the information related to the
hardware characteristics of the implementation.

To encourage the use of standards, as providers of
hardware independent methods for implementing the
control, measurement and monitoring functions, a
third part of the model should referred to the
software architecture following the IEC 61131-3
standard. This assures modularity and reusability of
applications.

In summary, the main requirements in the design and
development of industrial distributed control
applications are: related to functionality, a modular
and hierarchical specification of the control system.
Related to implementation, a model of the hardware
components and a model of the software architecture
for each of the processing elements. This modelling,
based in three separate parts, allows partial or full
reuse of both, applications and software. The model
has to be completed with the relationship between the
three different parts, as the components of the
functional specification are mapped to specific
processing elements (hardware components) and
each processing element has a specific software
architecture.

From the requirements that the modelling of
distributed IPMCS must meet, the requirements of
the modelling language can be identified:

Firstly, it must allow to define a formal grammar for
each of the separate parts of the model: functionality,
hardware components and software architecture.
Besides that, it has to provide means for achieving
syntactic and semantic analysis of each part.

Secondly, it must allow to check if the application
model specifies a coherent mapping between the
parts.

Finally, as each part of the model can be generated /
consumed by different software tools, the modelling
language should provide means for extracting part of
the information contained in the model instance.

2.1 XML as modelling Language

XML is a formal language and it comes from SGML
(Standard Generalized Markup Language). XML
documents contain data that are organized following
a tree hierarchical structure. The minimal
information units of this structure are XML elements.

Each element can be characterized by XML
attributes. There are different standards in XML
technologies (Arciniegas 2001, Simpson 2001) that
can be used for modelling distributed IPMCS as well
as for performing model coherence checks and for
obtaining part of the information contained in the
model. In particular, the XML schema standard (Van
der Vlist, 2002) can be used to define the formal
grammar for specifying the functionality and the
hardware and software architecture as established in
the previous sub-section. In order to perform
coherency and consistency checks of the different
parts of the model (semantic analysis) as well as the
overall model consistency, the XML schema
standard can be complemented with XML
schematron rules (Schematron, 2001). These are
necessaries in order to assure a correct mapping
between the model functionality and implementation
as well as to guarantee a correct value of critical
fields from either functionality or implementation.
Finally, the XML stylesheets (XSL) (Tidwell, 2001)
can be used to perform transformations of XML
documents.

3. FORMAL MODELLING OF DISTRIBUTED
IPMCS

The XML Technologies have been selected for the
modelling of distributed IPMCS. In particular, the
XML schema standard is used to define the formal
grammar of each part of the model: the functionality
(Platform Independent Model, PIM) that defines
‘what’ the control application has to do and the
Platform Specific Model (PSM) that defines ‘how’ to
do it in terms of the hardware components and the
software architecture of each processing resource.
Fig. 1 illustrates this separation of concerns proposed
by MDA defined in XML.

Fig. 1. Model general overview

The Functionality XML element defines how to
model the hierarchical specification of the control
system, independent from the technologies used for
implementing it. On the other hand, the Architecture
XML element defines how to specify a concrete
implementation. It is constituted by the hardware
architecture (a set of hardware components, nodes,
interconnected via networks) and the software
architecture following the IEC 61131-3 standard
software model. The following sub-sections detail
the main characteristics of each XML element.

3.1 Functionality (PIM)

The Functionality element defines a generic
hierarchical specification. It is based on components
(Functional_Basic_Component), characterized by its
hierarchical level and its connectors (Inputs and

Outputs). Fig. 2 shows the characteristics of these
components.

Fig. 2. Functional Basic Component

Each FBC is characterized by two XML attributes:
Name and Level, and by an optional Description
field. The Name identifies the FBC and the Level
represents its location in the hierarchy. The latter
XML attribute guarantees that the hierarchical level
of the component is between 1 and N, but this does
not assure that the level in the hierarchy is assigned
sequentially. To do that, it is necessary a schematron
rule as illustrated in Fig. 3.

 <rule context="pim:Functional_Basic_Component">

<assert test="current()/@Level=0 or
current()/@Level=parent::*[name()='pim:Functional_Basic_Component']/@Level+1"
priority="high">

The value of level in the Functional Basic Component is not correct
</assert>

</rule>
Fig. 3: Schematron rule Sequential hierarchical level

The other elements that compose the functionality
are the connectors that can be either Input or Output
to/from a component. A Connector is characterised
by its Name, Type and optionally a Description. Fig.
4 shows the connectors characteristics expressed in
XML.

<xs:element name="Connector">
<xs:complexType>

<xs:attribute name="Name" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="Type" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="connection"/>
<xs:enumeration value="configuration_parameter"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Description" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

<xs:element name="Connector">
<xs:complexType>

<xs:attribute name="Name" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="Type" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="connection"/>
<xs:enumeration value="configuration_parameter"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Description" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

Fig. 4. Connector XML element

A connector can be a connection (field signal) or a
Configuration Parameter (in case of an input
Connector). Note that if a connector is an output
from a FBC, the type of this connector can only be
connection. In order to assure the correct type of the
connector another schematron rule is developed.

3.2 Implementation (PSM)

In this sub-section the modelling of implementation
issues is detailed. As commented before, the
Architecture models the implementation issued in
terms of the hardware architecture (nodes and
networks) and the software architecture of each
processing element (following the IEC 61131-3
software model). Fig. 5 illustrates the two XML
elements that define the PSM.

Fig. 5. Platform Specific Model

The IEC 61131-3 software model defines a set of
elements to specify the execution of the software that
is to run in a processing element (e.g. PLC). Fig. 6
illustrates the elements of this model expressed in
XML.

Fig. 6. IEC 61131-3 Software model in XML

The elements of the IEC 61131-3 software model are
the following:
Configurations: processing elements. E.g. PLC or
OpenPLC. Resource: It provides support for program
execution. e.g. CPU or a Virtual Machine. Task: It
allows the designer to control the execution rates of
different parts of the program. POU: Program
Organisation Units that are Programs, Function
Blocks and Functions. They provide software reuse.
Variables: Defined by their visibility: global in a
configuration/resource level or local in programs. As
any other high level programming language, they are
characterised by their type and value.

The characteristics of each element have been
expressed in XML. As an example the characteristics
of a IEC 61131-3 Variables are illustrated in Fig. 7

Fig. 7. IEC 61131-3 variable

The type of a variable can be either Elementary, as
defined by the standard (iec:SimpleVarType), or user
defined (iec:OtherVarType). The elementary types
have also been defined and characterized in XML.
Fig. 8 illustrates the TIME type.

<xs:simpleType name="TIME">
<xs:restriction base="xs:string">

<xs:pattern
value="(T|t|TIME|time)(#\d*\p{P}?\d*h|#\d*h\d*\p{P}?\d*(m|s|ms)|#\d*h\d*m\d*\p{P}?
\d*s|#\d*h\d*(m|s)\d*\p{P}?\d*ms|#\d*h\d*m\d*s\d*\p{P}?\d*ms)"/>

<xs:pattern value="(T|t|TIME|time)(#\d*\p{P}?\d*m|#\d*m\d*\p{P}?\d*(s|ms))"/>
<xs:pattern value="(T|t|TIME|time)(#\d*\p{P}?\d*s|#\d*s\d*\p{P}?\d*ms)"/>
<xs:pattern value="(T|t|TIME|time)#\d*\p{P}?\d*ms"/>

</xs:restriction>
</xs:simpleType>

Fig. 8. TIME (IEC 61131-3 Elementary) Data type

Hardware Architecture. The hardware architecture of
an industrial control system can be defined as a set of
network nodes (nodes) connected through a set of
network segments (buses).

The Bus element represents a network segment
characterized by its application layer. A Node

element is connected to a network segment through a
communication board. There can be two types of
nodes: those that have processing resources (e.g.
PCs, PLCs, OpenPLC) and those that are only used
as input/output (e.g. PROFIBUS_DP slaves). The
former contains processing resources (CPUs) and
memory cards. Fig.9 illustrates the Node
characteristics in XML.

Fig. 9. Characteristics of the Node elements

Both types of node element have a
CommunicationBoard, as Fig. 10 illustrates.

<xs:element name="CommunicationBoard">
<xs:complexType>

<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Ethernet"/>
<xs:enumeration value="Profibus"/>
<xs:enumeration value="#Others"/>
</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="refBus" type="xs:string" use="required"/>
<xs:attribute name="Address" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]{1,3}\p{P}[0-9]{1,3}\p{P}[0-9]{1,3}\p{P}[0-9]{1,3}"/>
<xs:pattern value="\d*"/>
</xs:restriction>
</xs:simpleType>

</xs:attribute>
…
<xs:attribute name="portAddress" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

Fig. 10. Communication Board

A CommunicationBoard is characterised by its name,
type, the name of the network it belongs to (refBus)
and Address. This attribute must follow a pattern that
depends on its type. E.g. if it is an Ethernet
CommunicationBoard, its address must follow the
pattern xxx.xxx.xxx.xxx as Fig. 10 illustrates.

Relationship between both architectures. The XML
schema assures a correct modelling of the hardware
and software architectures separately. But it is also
necessary to guarantee that both architectures are
coherent and consistent between them. To do this, a
set of schematron rules have been implemented. Fig.
11 shows two examples.

<rule context="iec:Configuration">
<assert test="((count(//iec:Configuration)-1) -(count(//iec:Configuration/iec:Resource[@onProcessor

!=current()/iec:Resource/@onProcessor])- count(//iec:Configuration/iec:Resource[@onProcessor
=current()/iec:Resource/@onProcessor]))) =0 or ((count(//iec:Configuration/iec:Resource[@onProcessor
!=current()/iec:Resource/@onProcessor])- count(//iec:Configuration/iec:Resource[@onProcessor
=current()/iec:Resource/@onProcessor]))-(count(//iec:Configuration)-1))=0 or (count(//iec:Configuration) -
count(//iec:Configuration[@Name!=current()/@Name]))=1" priority="high">

The mapping between a configuration and an intelligent node must be one to one
</assert>

</rule>
<rule context="iec:Resource">

<assert test="count(current()[@onProcessor=//arch:IntelligentNode/@name])=1" priority="high">
A resource must be downloaded to an existing intelligent node

</assert>
</rule>

Fig. 11. schematron rules for HW and SW mapping

For instance, it is necessary to check that a
configuration is mapped to an intelligent node, or the
resources of the same configuration are mapped to
the same existing intelligent node.

3.3 Model coherence and consistence checks

A set of schematron rules have been implemented in
order to assure that the overall modelled application
is coherent and consistent. Thus, it is necessary to
assure that the implementation is consistent and
coherent with respect to the designed functionality.
Some of the most important checks are (see Fig. 12):

A lowest level FBC is mapped to a POU instance.A
program can only contain Function Blocks.A FBC
belonging to level 1 to N-1 can optionally correspond
to a POU instance.

<rule context="pim:Functional_Basic_Component">
<assert test="count(pim:Functional_Basic_Component)=0 and

count(//iec:Program[@Name=current()/@refPSMElement]) +
count(//iec:FunctionBlock/iec:Repository/*[@Name=current()/@refPSMElement]) +
count(//iec:FunctionBlock/iec:NewPOU[@Name=current()/@refPSMElement])=1 or
count(./pim:Functional_Basic_Component)!=0" priority="high">

A Level N Functional Basic Component must corresponds to a Program Organisation Unit instance
</assert>
<assert

test="count(parent::*[name()='pim:Functional_Basic_Component'][@refPSMElement=//iec:Program/@Name])
=1 and count(current()[@refPSMElement=//iec:FunctionBlock/iec:NewPOU/@Name]) +
count(current()[@refPSMElement=//iec:FunctionBlock/iec:Repository/*/@Name])=1 or
count(parent::*[name()='pim:Functional_Basic_Component'][@refPSMElement=//iec:Program/@Name])!=1"
priority="high">

When the upper level FBC corresponds to a program, the FBC must corresponds to a Function Block
</assert>
<assert test="count(./pim:Functional_Basic_Component)!=0 and @refPSMElement and

count(current()[@refPSMElement=//iec:Program/@Name])+
count(current()[@refPSMElement=//iec:FunctionBlock/iec:Repository/*/@Name])+count(current()[@refPSMEl
ement=//iec:FunctionBlock/iec:NewPOU/@Name]) = 1 or not(@refPSMElement) or
count(./pim:Functional_Basic_Component)=0" priority="high">

An FBC belonging to level 1 to N-1 only can corresponds to POU instance
</assert>

</rule>

Fig. 12. Consistency analysis of the overall model

4. CASE STUDY: A HEAT TREATMENT LINE

This section illustrates the proposed modelling
methodology as applied to an industrial case study:
the distributed control system of a Heat Treatment
Line.

Fig. 13 illustrates a typical Heat Treatment Line
(HTL) that is composed by the following sub-
systems: a Load System, an Austenizing Furnace, a
Tempering Tank, a Washing Tank and an Annealing
Furnace.

Load
System

Austenizing
Furnace

Quenching
Tank

Washing
Machine

Tempering Furnace

Load
System

Austenizing
Furnace

Quenching
Tank

Washing
Machine

Tempering Furnace

Fig. 13. General overview of a Heat Treatment Line

Let us apply the modelling methodology proposed in
section 3 to two representative sub-systems of the
complete line: the Austenizing Furnace and the Load
System.

The Austenizing Furnace with four zones and two
burners per zone. The temperature regulation is
performed in each of the four zones, where the
temperature should be around 850º C. A conveyor
belt moves the pieces through the furnace. The speed
of the conveyor depends on the required heating
treatment.

The design of the control system functionality for the
complete line involves four hierarchical levels:

Level 0: The plant. Level 1: Components
corresponding to each independent subsystem of the
plant. In this case, the Austenizing Furnace and the
Load System. Level 2: Each level 1 component is
composed by a set of level 2 components. For
instance, the Austenizing Furnace, a level 1
component, includes 6 level 2 components: the Gas
Train Control, the Burner Combustion Control, the
Zone Fan Control, the Combustion Fan Control, the
Temperature Regulation and the Movements Control.
Level 3: This level is composed by elementary
functional components. For instance, the level 2
Movements Control Component contains three
elementary blocks: the Conveyor Control, the
Conveyor Movement Control and the Set Point level.
All three belongs to the third level of the functional
hierarchy. Fig. 14 illustrates this functionality
expressed in XML.

Fig. 14. HTL functionality

The control system is implemented in two OMRON
Open Network Controller (a Configuration element
of the IEC 61131-3 standard), one containing two
Resources and the other one. Fig. 15 shows the
hardware architecture for this implementation.

ETHERNET NETWORK

Configuration 1

SCADA InTouch/
ISaGRAF HMI

PROFIBUS DP

Slave Slave

DI/DO-AI/AO DI/DO-AI/AO

ADC
DAC

PC 104
Process Simulation
Vx Works

Configuration 2

Austenizing
Furnace

Load
System

PROFIBUS DP

Slave

DI/DO-AI/AO

ADC
DAC

PC 104
Process Simulation
Vx Works

ETHERNET NETWORK

Configuration 1

SCADA InTouch/
ISaGRAF HMI

PROFIBUS DP

Slave Slave

DI/DO-AI/AO DI/DO-AI/AO

ADC
DAC

PC 104
Process Simulation
Vx Works

PROFIBUS DP

Slave Slave

DI/DO-AI/AO DI/DO-AI/AO

ADC
DAC

PC 104
Process Simulation
Vx Works

Configuration 2

Austenizing
Furnace

Load
System

PROFIBUS DP

Slave

DI/DO-AI/AO

ADC
DAC

PC 104
Process Simulation
Vx Works

PROFIBUS DP

Slave

DI/DO-AI/AO

ADC
DAC

PC 104
Process Simulation
Vx Works

Fig. 15. General scenario of the HW components

Fig. 16 illustrates the part of the model instance that
corresponds to the hardware architecture.

Fig. 16. Hardware architecture of HTL

Fig. 17 shows part of the software architecture of the
model instance.

Fig. 17. Software architecture of HTL

This application has been developed within the
FLEXICON project. The general goal of the project,
financed by the European Union’s Information and
Science Technologies programme, is to develop
methodologies that enable Commercial Off-The-
Shelf (COTS) tools integration for the design and
deployment of Distributed Control Systems (DCS)
with high degree of flexibility, dependability and re-
usability. Within the FLEXICON toolset, the
modelling tool is UML. Once the application model
is defined in terms of the functionality of the control
system and the hardware and software architectures
of the implementation, the information captured is
expressed in XML as a model instance. This XML
file is validated against the proposed schema and
content and cross content checks are performed via
the schematron rules commented in section 3.
Finally, as one of the goals of the FLEXICON
project is to generate IEC 61131-3 ST code, the
necessary stylesheets have been developed in order
to generate source code and download the
application code into the target processing resources.

5. CONCLUSIONS

XML technologies have been proved to be very
powerful to implement formal modelling of
distributed IPMCS. In this paper, a formal model for
this kind of applications has been described. XML
schemas are used to formally described the model of
the distributed system. This allows formal validation
of model instances. Schematron rules can be used for
achieving validation contents and cross contents.
Finally, stylesheets allow transformation between
XML documents and extract information from an
XML document. Thus, the proposed formal model
for distributed IPMCS and the XML technologies
allow to integrate different software tools for
generating /consuming part of the model instance.
Besides that, the work presented here is completely
compatible with the goals of PLCopen TC6 XML
and it can also be extended to support the
requirements of the evolving IEC 61499 standard to
model distributed IPMCS.

6. ACKNOWLEDGEMENTS

This work has been supported in part by EU-IST
programme under project IST-2001-37269 and by
MCYT&FEDER under project DPI 2003-2399.

REFERENCES

Arciniegas, F. (2001). Programación avanzada con

XML, McGraw-Hill.
Bonfé, M., Fantuzzi, C. (2000) “Mechatronic Objects

encapsulation in IEC 1131-3 Norm“.
Proceedings of the 2000 IEEE Int. Conf. on C A,
pp.598-603.

Gonzalez, V. M., F. Mateos, N. Amos (2003).
MLAV. Object-Oriented Methodology for the
Analysis and Modelling of the Control Logic of
Discrete Event Systems, SSGRR 2003.

Heverhagen, T., Tracht, R. (2001) “Integrating
UML-RealTime and IEC 61131-3 with Function
Block Adapters”. Proceedings of the IEEE
International Symposium on OO RT Distributed
Computing.

IEC Technical Committee TC65/WG6 (2000).
IEC61499 Industrial-Process Measurement and
Control – Specification. IEC Draft.

Jacobson, I., Christerson, M., Jonsson, P., Övergaard,
G., (1992) “Object - oriented software
engineering.”. Addison-Wesley.

Kandare, G. (2001). Model-based software design for
procedural process control with programmable
logic controllers. The 2nd Int. PhD student
workshop on systems and control, [COBISS.SI-
ID 16409639]

Lewis, R.W., (1998) “Programming Industrial
Control Systems using IEC 1131-3”. IEE
Control Engineering Series.

Marcos M., Estévez E., Gangoiti U., Sarachaga I.
(2004). UML Modelling of distributed control
systems, Proc. of the 6th Portuguese Conference
on Automatic Control CONTROLO 2004,.

Millar J, Mukerji J. (2001) Model Driven
Architecture (MDA). OMG, ormsc/2001-07-01.

OMG (2002). OMG IDL Syntax and Semantics.
www.omg.org/docs/formal/02-06-07.pdf .

PLCopen (2003). PLCopen for efficiency in
automation. www.PLCopen.org

Power Douglas, B. (1998) “Real Time UML
developing efficient objects for embedded
systems”. Addison Wesley.

Rumbaugh, J., Blaha, M., Premerlan, W., Eddy,
F.,Lorensen, W., (1996) “Modelado y diseño
orientados a objetos. Metodología OMT”.
Prentice Hall.

Schematron (2001). http://xml.ascc.net/schematron/
Simpson, J.E. (2001). Just XML. second Edition,

Prentice Hall PTR.
Thramboulidis, K. and C. Tranoris (2001). An

Architecture for the Development of Function
Block Oriented Engineering Support Systems.
CIRA 2001.

Thramboulidis, K. (2003). An Architecture to Extend
the IEC 61499 Model for Distributed Control
Applications. 7th Conference on Automation
Technology (Automation 2003).

Tidwell, D. (2001). XSLT, Ed. O’REILLY.
Van der Vlist, E.(2002). XML Schema,. Ed.

O’REILLY.

