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Abstract: Industrial Process Measurement and Control Systems (IPMCS) are used in most 
of the industrial sectors to achieve production improvement, process optimisation and 
time and cost reduction. Integration, reuse, flexibility and optimisation are demanded to 
adapt to a rapidly changing and competitive market. There is also a growing requirement 
that all software tools that support the different phases of the development process 
(design, configuration, management) can be integrated as well. Thus, a consolidation of 
modelling methodologies for achieving this goal is needed. This paper presents a formal 
modelling for IPMCS that captures all aspects of the system to design in terms of 
functionality and implementation (hardware and software). The modelling language 
(eXtensible Markup Language, XML) allow to implement model validation as well as to 
easily transform information coming from / going to different software tools, achieving 
tool integration.  Copyright © 2005 IFAC 
 
Keywords: distributed control systems, formal modelling, programmable logic 
controllers, industrial applications. 

 
 
 
 

 
1. INTRODUCTION 

 
Nowadays most of the industrial sectors use 
Programmable Logic Controllers (PLCs) to achieve 
the control of their productive systems. In the last 
years, technological advances in these controllers 
allow the production improvement, process 
optimisation and time and cost reduction. The 
application of standards has also a great force in the 
fast growth of the control and instrumentation of 
industrial processes. The International 
Electrotechnical Commission has published several 
standards promoting interchangeable and open 
systems. The IEC 61131-3 standard deals with the 
software model and programming languages for 
IPCMS. The evolving standard IEC 61499 standard 
(IEC, 2000) focuses on distributed IPMCS based on 
an extended definition of Function Blocks and it 
provides the requirements for software tools to 
support the specification, analysis and validation of 
Distributed IPMCS as well as the configuration, 
implementation, operation and maintenance of such 
systems. However, as fast as industry reaches a 
greater maturity level, a consolidation of the 
modelling methodologies becomes necessary. 
Therefore, modelling languages, that allow system 
description and definition before their construction, 

must be used. The modelling methodology should 
allow to model the system from different viewpoints 
as well as to involve the entire system lifecycle.  
 
In this sense, PLCopen (PLCopen, 2003) is a vendor- 
and product-independent worldwide association 
whose mission is to be the leading association 
resolving topics related to control programming to 
support the use of international standards in this 
field. For this, PLCopen has several technical and 
promotional committees (TCs). In particular, TC6 for 
XML had as original goal to define an open interface 
to communicate different programming tools. But, 
from the beginning, TC6 members realized that 
having XML as a common road, other tools, like 
simulation and modelling tools, or documentation 
and version control tools could be integrated.  
 
Some attempts have been done by different authors 
towards the use of well known modelling languages 
for designing IPMCS. Bonfé and Fantuzzi (2000), 
Heverhagen and Tracht, (2001) propose the use of 
UML (Jacobson, et al., 1992), (Rumbaugh, et al., 
1996) for specifying components of control systems 
following the IEC 61131-3 standard. But they only 
model the implementation issues for this software 
model and their goal is to generate source code. 
There are other works that focus on the design of 



 

     

applications using the IEC 61131 standard. Gonzalez 
et al. (2003) propose a methodology for the analysis 
and modelling of discrete event systems applied to 
the development of the control logic based on the 
IEC 61131-3 standard. In Kandare (2001), a 
graphical tool that generates IEC 61131-3 structured 
text (ST) code is described. 
 
On the other hand, work is being done towards the 
design and development of a framework to support 
the engineering process of distributed IPMCS 
(Thramboulidis and Tranoris 2001, Thramboulidis 
2003). The design is object oriented and uses UML 
to define a 4-layered architecture for designing such 
type of systems. 
 
Previous works of authors Marcos et al. (2004) 
propose a model for industrial distributed control 
systems also using UML and the Model Driven 
Architecture (MDA) methodology (Millar and 
Mukerji, 2001), proposed by OMG (OMG 2002). 
Following the MDA concept, the distributed IPMCS 
is modelled in two parts that are complimentary: the 
functionality and the implementation of this 
functionality following the IEC 61131-3 standard 
software model. The model is completed by mapping 
the functionality to the concrete IEC 61131-3 
architecture. The main problem that arises in this 
UML-based modelling is to check the consistence 
(the definition of the parts must follow a strict formal 
model) and the coherence of the overall system being 
modelled (the parts, functionality and hardware and 
software architecture, refers to the same industrial 
distributed control system). The modelling language 
must offer tools to define formal models and to 
perform syntactic and semantic analysis of model 
instances (applications). The current version of UML 
does not support this. 
 
This paper presents a formal modelling for 
distributed IPMCS using XML as modelling 
language, given that XML offers powerful 
technologies for defining formal grammars and 
performing the necessary coherence and consistence 
analysis. This model of an application will be 
generated / consumed in part by different software 
tools involved in the life cycle of the applications. 
 
The layout of the paper is as follows: section 2 
briefly describes the modelling requirements from 
which arise the requirements that must be met by the 
modelling language. Section 3 presents a formal 
modelling for distributed IPCS using XML, the 
modelling language selected. Finally, section 4 
illustrates the proposed modelling methodology in an 
industrial application: a Heat Treatment Line. 
 
 

2. MODELLING OF DISTRIBUTED IMPCS 
 
Usually, an important part of the control system 
corresponds to the modules that control the basic 
mechanical components. In addition, different 
communication modules exist between the part 
which controls the basic components and the main 

plant controllers. For this reason, the definition of the 
system in a modularized and hierarchical way 
presents clear advantages. Within a hierarchical 
design, each module represents the control of a set of 
lower level components. 
 
In order to feed documentation and configuration 
tools with the information from the distributed 
IPMCS system model, other independent part of this 
model should inform about the hardware components 
that are used to implement the system (controllers 
e.g. PLCs, networks, industrial buses, etc.). This part 
of the model captures the information related to the 
hardware characteristics of the implementation.  
 
To encourage the use of standards, as providers of 
hardware independent methods for implementing the 
control, measurement and monitoring functions, a 
third part of the model should referred to the 
software architecture following the IEC 61131-3 
standard. This assures modularity and reusability of 
applications. 
 
In summary, the main requirements in the design and 
development of industrial distributed control 
applications are: related to functionality, a modular 
and hierarchical specification of the control system. 
Related to implementation, a model of the hardware 
components and a model of the software architecture 
for each of the processing elements. This modelling, 
based in three separate parts, allows partial or full 
reuse of both, applications and software. The model 
has to be completed with the relationship between the 
three different parts, as the components of the 
functional specification are mapped to specific 
processing elements (hardware components) and 
each processing element has a specific software 
architecture. 
 
From the requirements that the modelling of 
distributed IPMCS must meet, the requirements of 
the modelling language can be identified:  
 
Firstly, it must allow to define a formal grammar for 
each of the separate parts of the model: functionality, 
hardware components and software architecture. 
Besides that, it has to provide means for achieving 
syntactic and semantic analysis of each part. 
 
Secondly, it must allow to check if the application 
model specifies a coherent mapping between the 
parts. 
 
Finally, as each part of the model can be generated / 
consumed by different software tools, the modelling 
language should provide means for extracting part of 
the information contained in the model instance. 
 
 
2.1 XML as modelling Language 
 
XML is a formal language and it comes from SGML 
(Standard Generalized Markup Language). XML 
documents contain data that are organized following 
a tree hierarchical structure. The minimal 
information units of this structure are XML elements. 



 

     

Each element can be characterized by XML 
attributes. There are different standards in XML 
technologies (Arciniegas 2001, Simpson 2001) that 
can be used for modelling distributed IPMCS as well 
as for performing model coherence checks and for 
obtaining part of the information contained in the 
model. In particular, the XML schema standard (Van 
der Vlist, 2002) can be used to define the formal 
grammar for specifying the functionality and the 
hardware and software architecture as established in 
the previous sub-section. In order to perform 
coherency and consistency checks of the different 
parts of the model (semantic analysis) as well as the 
overall model consistency, the XML schema 
standard can be complemented with XML 
schematron rules (Schematron, 2001). These are 
necessaries in order to assure a correct mapping 
between the model functionality and implementation 
as well as to guarantee a correct value of critical 
fields from either functionality or implementation. 
Finally, the XML stylesheets (XSL) (Tidwell, 2001) 
can be used to perform transformations of XML 
documents. 
 
 

3. FORMAL MODELLING OF DISTRIBUTED 
IPMCS 

 
The XML Technologies have been selected for the 
modelling of distributed IPMCS. In particular, the 
XML schema standard is used to define the formal 
grammar of each part of the model: the functionality 
(Platform Independent Model, PIM) that defines 
‘what’ the control application has to do and the 
Platform Specific Model (PSM) that defines ‘how’ to 
do it in terms of the hardware components and the 
software architecture of each processing resource. 
Fig. 1 illustrates this separation of concerns proposed 
by MDA defined in XML. 
 

 
Fig. 1. Model general overview 

The Functionality XML element defines how to 
model the hierarchical specification of the control 
system, independent from the technologies used for 
implementing it. On the other hand, the Architecture 
XML element defines how to specify a concrete 
implementation. It is constituted by the hardware 
architecture (a set of hardware components, nodes, 
interconnected via networks) and the software 
architecture following the IEC 61131-3 standard 
software model. The following sub-sections detail 
the main characteristics of each XML element.  
 
 
3.1 Functionality (PIM) 
 
The Functionality element defines a generic 
hierarchical specification. It is based on components 
(Functional_Basic_Component), characterized by its 
hierarchical level and its connectors (Inputs and 

Outputs). Fig. 2 shows the characteristics of these 
components. 
 

 
Fig. 2. Functional Basic Component 

Each FBC is characterized by two XML attributes: 
Name and Level, and by an optional Description 
field. The Name identifies the FBC and the Level 
represents its location in the hierarchy. The latter 
XML attribute guarantees that the hierarchical level 
of the component is between 1 and N, but this does 
not assure that the level in the hierarchy is assigned 
sequentially. To do that, it is necessary a schematron 
rule as illustrated in Fig. 3.  
 
 <rule context="pim:Functional_Basic_Component">

<assert test="current()/@Level=0 or
current()/@Level=parent::*[name()='pim:Functional_Basic_Component']/@Level+1"
priority="high">

The value of level in the Functional Basic Component is not correct
</assert>

</rule>  
Fig. 3: Schematron rule Sequential hierarchical level 

The other elements that compose the functionality 
are the connectors that can be either Input or Output 
to/from a component. A Connector is characterised 
by its Name, Type and optionally a Description. Fig. 
4 shows the connectors characteristics expressed in 
XML. 
 

<xs:element name="Connector">
<xs:complexType>

<xs:attribute name="Name" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="Type" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="connection"/>
<xs:enumeration value="configuration_parameter"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Description" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

<xs:element name="Connector">
<xs:complexType>

<xs:attribute name="Name" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="Type" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="connection"/>
<xs:enumeration value="configuration_parameter"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Description" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>  

Fig. 4. Connector XML element 

A connector can be a connection (field signal) or a 
Configuration Parameter (in case of an input 
Connector). Note that if a connector is an output 
from a FBC, the type of this connector can only be 
connection. In order to assure the correct type of the 
connector another schematron rule is developed. 
 
 
3.2 Implementation (PSM) 
 
In this sub-section the modelling of implementation 
issues is detailed. As commented before, the 
Architecture models the implementation issued in 
terms of the hardware architecture (nodes and 
networks) and the software architecture of each 
processing element (following the IEC 61131-3 
software model). Fig. 5 illustrates the two XML 
elements that define the PSM. 
 



 

     

 
Fig. 5. Platform Specific Model 

The IEC 61131-3 software model defines a set of 
elements to specify the execution of the software that 
is to run in a processing element (e.g. PLC). Fig. 6 
illustrates the elements of this model expressed in 
XML. 
 

 
Fig. 6. IEC 61131-3 Software model in XML 

The elements of the IEC 61131-3 software model are 
the following:  
Configurations: processing elements. E.g. PLC or 
OpenPLC. Resource: It provides support for program 
execution. e.g. CPU or a Virtual Machine. Task: It 
allows the designer to control the execution rates of 
different parts of the program. POU: Program 
Organisation Units that are Programs, Function 
Blocks and Functions. They provide software reuse. 
Variables: Defined by their visibility: global in a 
configuration/resource level or local in programs. As 
any other high level programming language, they are 
characterised by their type and value. 
 
The characteristics of each element have been 
expressed in XML. As an example the characteristics 
of a IEC 61131-3 Variables are illustrated in Fig. 7  
 

 
Fig. 7. IEC 61131-3 variable  

The type of a variable can be either Elementary, as 
defined by the standard (iec:SimpleVarType), or user 
defined (iec:OtherVarType). The elementary types 
have also been defined and characterized in XML. 
Fig. 8 illustrates the TIME type. 
 

<xs:simpleType name="TIME">
<xs:restriction base="xs:string">

<xs:pattern
value="(T|t|TIME|time)(#\d*\p{P}?\d*h|#\d*h\d*\p{P}?\d*(m|s|ms)|#\d*h\d*m\d*\p{P}?
\d*s|#\d*h\d*(m|s)\d*\p{P}?\d*ms|#\d*h\d*m\d*s\d*\p{P}?\d*ms)"/>

<xs:pattern value="(T|t|TIME|time)(#\d*\p{P}?\d*m|#\d*m\d*\p{P}?\d*(s|ms))"/>
<xs:pattern value="(T|t|TIME|time)(#\d*\p{P}?\d*s|#\d*s\d*\p{P}?\d*ms)"/>
<xs:pattern value="(T|t|TIME|time)#\d*\p{P}?\d*ms"/>

</xs:restriction>
</xs:simpleType>  

Fig. 8. TIME (IEC 61131-3 Elementary ) Data type 

Hardware Architecture. The hardware architecture of 
an industrial control system can be defined as a set of 
network nodes (nodes) connected through a set of 
network segments (buses).  
 
The Bus element represents a network segment 
characterized by its application layer. A Node 

element is connected to a network segment through a 
communication board. There can be two types of 
nodes: those that have processing resources (e.g. 
PCs, PLCs, OpenPLC) and those that are only used 
as input/output (e.g. PROFIBUS_DP slaves). The 
former contains processing resources (CPUs) and 
memory cards. Fig.9 illustrates the Node 
characteristics in XML.  
 

 
Fig. 9. Characteristics of the Node elements 

Both types of node element have a 
CommunicationBoard, as Fig. 10 illustrates.  
 

 

<xs:element name="CommunicationBoard">
<xs:complexType>

<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Ethernet"/>
<xs:enumeration value="Profibus"/>
<xs:enumeration value="#Others"/>
</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="refBus" type="xs:string" use="required"/>
<xs:attribute name="Address" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]{1,3}\p{P}[0-9]{1,3}\p{P}[0-9]{1,3}\p{P}[0-9]{1,3}"/>
<xs:pattern value="\d*"/>
</xs:restriction>
</xs:simpleType>

</xs:attribute>
…
<xs:attribute name="portAddress" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>  

Fig. 10. Communication Board 

A CommunicationBoard is characterised by its name, 
type, the name of the network it belongs to (refBus) 
and Address. This attribute must follow a pattern that 
depends on its type. E.g. if it is an Ethernet 
CommunicationBoard, its address must follow the 
pattern xxx.xxx.xxx.xxx as Fig. 10 illustrates. 
 
Relationship between both architectures. The XML 
schema assures a correct modelling of the hardware 
and software architectures separately. But it is also 
necessary to guarantee that both architectures are 
coherent and consistent between them. To do this, a 
set of schematron rules have been implemented. Fig. 
11 shows two examples. 
 

<rule context="iec:Configuration">
<assert test="((count(//iec:Configuration)-1) -(count(//iec:Configuration/iec:Resource[@onProcessor

!=current()/iec:Resource/@onProcessor])- count(//iec:Configuration/iec:Resource[@onProcessor
=current()/iec:Resource/@onProcessor]))) =0 or ((count(//iec:Configuration/iec:Resource[@onProcessor
!=current()/iec:Resource/@onProcessor])- count(//iec:Configuration/iec:Resource[@onProcessor
=current()/iec:Resource/@onProcessor]))-(count(//iec:Configuration)-1))=0 or (count(//iec:Configuration) -
count(//iec:Configuration[@Name!=current()/@Name]))=1" priority="high">

The mapping between a configuration and an intelligent node must be one to one
</assert>

</rule>
<rule context="iec:Resource">

<assert test="count(current()[@onProcessor=//arch:IntelligentNode/@name])=1" priority="high">
A resource must be downloaded to an existing intelligent node

</assert>
</rule>  

Fig. 11. schematron rules for HW and SW mapping 

For instance, it is necessary to check that a 
configuration is mapped to an intelligent node, or the 
resources of the same configuration are mapped to 
the same existing intelligent node. 
 
 



 

     

3.3 Model coherence and consistence checks 
 
A set of schematron rules have been implemented in 
order to assure that the overall modelled application 
is coherent and consistent. Thus, it is necessary to 
assure that the implementation is consistent and 
coherent with respect to the designed functionality. 
Some of the most important checks are (see Fig. 12): 
 
A lowest level FBC is mapped to a POU instance.A 
program can only contain Function Blocks.A FBC 
belonging to level 1 to N-1 can optionally correspond 
to a POU instance. 
 

<rule context="pim:Functional_Basic_Component">
<assert test="count(pim:Functional_Basic_Component)=0 and

count(//iec:Program[@Name=current()/@refPSMElement]) + 
count(//iec:FunctionBlock/iec:Repository/*[@Name=current()/@refPSMElement]) + 
count(//iec:FunctionBlock/iec:NewPOU[@Name=current()/@refPSMElement])=1 or
count(./pim:Functional_Basic_Component)!=0" priority="high">

A Level N Functional Basic Component must corresponds to a Program Organisation Unit instance
</assert>
<assert

test="count(parent::*[name()='pim:Functional_Basic_Component'][@refPSMElement=//iec:Program/@Name])
=1 and count(current()[@refPSMElement=//iec:FunctionBlock/iec:NewPOU/@Name]) + 
count(current()[@refPSMElement=//iec:FunctionBlock/iec:Repository/*/@Name])=1 or
count(parent::*[name()='pim:Functional_Basic_Component'][@refPSMElement=//iec:Program/@Name])!=1"
priority="high">

When the upper level FBC corresponds to a program, the FBC must corresponds to a Function Block
</assert>
<assert test="count(./pim:Functional_Basic_Component)!=0 and @refPSMElement and

count(current()[@refPSMElement=//iec:Program/@Name])+ 
count(current()[@refPSMElement=//iec:FunctionBlock/iec:Repository/*/@Name])+count(current()[@refPSMEl
ement=//iec:FunctionBlock/iec:NewPOU/@Name]) = 1 or not(@refPSMElement) or
count(./pim:Functional_Basic_Component)=0" priority="high">

An FBC belonging to level 1 to N-1 only can corresponds to POU instance
</assert>

</rule>  
 
Fig. 12. Consistency analysis of the overall model 
 
 

4. CASE STUDY: A HEAT TREATMENT LINE 
 
This section illustrates the proposed modelling 
methodology as applied to an industrial case study: 
the distributed control system of a Heat Treatment 
Line. 
 
Fig. 13 illustrates a typical Heat Treatment Line 
(HTL) that is composed by the following sub-
systems: a Load System, an Austenizing Furnace, a 
Tempering Tank, a Washing Tank and an Annealing 
Furnace. 
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Fig. 13. General overview of a Heat Treatment Line 

Let us apply the modelling methodology proposed in 
section 3 to two representative sub-systems of the 
complete line: the Austenizing Furnace and the Load 
System. 
 
The Austenizing Furnace with four zones and two 
burners per zone. The temperature regulation is 
performed in each of the four zones, where the 
temperature should be around 850º C. A conveyor 
belt moves the pieces through the furnace. The speed 
of the conveyor depends on the required heating 
treatment. 
 
The design of the control system functionality for the 
complete line involves four hierarchical levels: 

Level 0: The plant. Level 1: Components 
corresponding to each independent subsystem of the 
plant. In this case, the Austenizing Furnace and the 
Load System. Level 2: Each level 1 component is 
composed by a set of level 2 components. For 
instance, the Austenizing Furnace, a level 1 
component, includes 6 level 2 components: the Gas 
Train Control, the Burner Combustion Control, the 
Zone Fan Control, the Combustion Fan Control, the 
Temperature Regulation and the Movements Control. 
Level 3: This level is composed by elementary 
functional components. For instance, the level 2 
Movements Control Component contains three 
elementary blocks: the Conveyor Control, the 
Conveyor Movement Control and the Set Point level. 
All three belongs to the third level of the functional 
hierarchy. Fig. 14 illustrates this functionality 
expressed in XML. 
 

 
Fig. 14. HTL functionality 

The control system is implemented in two OMRON 
Open Network Controller (a Configuration element 
of the IEC 61131-3 standard), one containing two 
Resources and the other one. Fig. 15 shows the 
hardware architecture for this implementation. 
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Fig. 15. General scenario of the HW components 

Fig. 16 illustrates the part of the model instance that 
corresponds to the hardware architecture.  
 

 
Fig. 16. Hardware architecture of HTL 



 

     

Fig. 17 shows part of the software architecture of the 
model instance. 
 

 
Fig. 17. Software architecture of HTL 

This application has been developed within the 
FLEXICON project. The general goal of the project, 
financed by the European Union’s Information and 
Science Technologies programme, is to develop 
methodologies that enable Commercial Off-The-
Shelf (COTS) tools integration for the design and 
deployment of Distributed Control Systems (DCS) 
with high degree of flexibility, dependability and re-
usability. Within the FLEXICON toolset, the 
modelling tool is UML. Once the application model 
is defined in terms of the functionality of the control 
system and the hardware and software architectures 
of the implementation, the information captured is 
expressed in XML as a model instance. This XML 
file is validated against the proposed schema and 
content and cross content checks are performed via 
the schematron rules commented in section 3. 
Finally, as one of the goals of the FLEXICON 
project is to generate IEC 61131-3 ST code, the 
necessary stylesheets have been developed in order 
to generate source code and download the 
application code into the target processing resources. 
 
 

5. CONCLUSIONS 
 
XML technologies have been proved to be very 
powerful to implement formal modelling of 
distributed IPMCS. In this paper, a formal model for 
this kind of applications has been described. XML 
schemas are used to formally described the model of 
the distributed system. This allows formal validation 
of model instances. Schematron rules can be used for 
achieving validation contents and cross contents. 
Finally, stylesheets allow transformation between 
XML documents and extract information from an 
XML document. Thus, the proposed formal model 
for distributed IPMCS and the XML technologies 
allow to integrate different software tools for 
generating /consuming part of the model instance. 
Besides that, the work presented here is completely 
compatible with the goals of PLCopen TC6 XML 
and it can also be extended to support the 
requirements of the evolving IEC 61499 standard to 
model distributed IPMCS. 
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