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Abstract: In this first part of a two-parts paper we introduce the framework of Partial
difference Equations (PdEs) over graphs for analyzing the behavior of multi-agent
systems equipped with decentralized control schemes. We generalize the Vicsek’s
model (Viesek et al., 1995) by introducing errors in the agent dynamics and analyze
agent alignment in leaderless and leader-follower models through the joint use of
PdEs and automatic control tools. Moreover, we show that the resulting PdEs enjoy
properties that are similar to those of well-known Partial Differential Equations
(PDESs) like the heat equation, thus allowing to exploit physical-based reasoning for
conjecturing properties of the collective dynamics. Copyright© 2005 IFAC
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1. INTRODUCTION

In the last few years, the problem of understand-
ing when the individual actions of interacting
agents give rise to a coordinated behavior has re-
ceived a considerable attention in many fields. For
instance, this issue appears in biology, statistical
physics and computer graphics. For a thorough
review of the literature in various field, we defer
the interested reader to (Jadbabaie et al., 2003)
and (Tanner et al., 2004).

In the control community, the interest in coor-
dination phenomena has been recently promoted
by the need of controlling groups of unmanned au-
tonomous vehicles, like airplanes or robots (Ogren
et al., 2002). A fairly simplified setup, adopted for
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instance in (Jadbabaie et al., 2003) and (Tanner
et al., 2003), is to consider a group of N mobile
agents, each one described by a dynamical system
capturing the evolution of its position and veloc-
ity. Different agents share information through a
communication network: agents connected by a
communication link are neighbors and position
and velocity of each one is instantaneously avail-
able to the others for regulating their own trajec-
tory. When agents communicate with a limited
number of neighbors, one faces the problem of
designing a decentralized control scheme (where
each agent uses only the neighbors information)
in order to orchestrate the collective behavior.
Decentralization implies that the control action
can be computed in a distributed fashion.

The main purpose of this paper is to propose
a new modeling framework for the analysis of



multi-agent systems. Our approach exploits the
formalism of Partial difference Equations (PdEs)
over graphs proposed by Bensoussan and Menaldi
(2004) and summarized in Section 2. Conceptu-
ally, PdEs mimic PDEs (Partial Differential Equa-
tions) in spatial domains having a graph struc-
ture and, in (Bensoussan and Menaldi, 2004),
the basic mathematical framework for studying
static problems of elliptic type is provided. In
order to account for the temporal dynamics of the
agents, we generalize the models of (Bensoussan
and Menaldi, 2004) to continuous-time PdEs. One
major difference between PDEs and PdEs is that
the latter can be recast into systems of Ordi-
nary Differential Equations (ODEs). However, we
argue that PdE models can be more expressive
than their equivalent ODE form, for many rea-
sons. First, many mathematical tools for analyz-
ing PdEs are completely analogous to the ones
developed for PDEs. Then, the PdEs formalism
establishes a direct link between classic functional
analysis and control theory that can be fruit-
fully exploited for studying systems linked by a
communication network. Second, PdEs provide a
mathematical description of the collective dynam-
ics where spatial phenomena (due to the graph
structure), and temporal evolution of the agent
states, are kept separated and described through
operators acting either on space or time. In our
opinion, this vehicles a precise picture about the
interaction between the communication network
and the agent dynamics. Third, the PdEs frame-
work leads to equations that may be reminiscent
of PDEs arising in physics and this can be of
great help for conjecturing sensible properties of
the collective dynamics.

In the present paper we introduce the frame-
work of PdEs (Section 2) and discuss their main
properties. In Section 3 we exploit PdEs for
analyzing alignment in leaderless multi-agent sys-
tems equipped with the “Laplacian control law”,
a control strategy inspired to the one proposed by
Vicsek et al. (1995). Differently from other results
available in literature, we consider also the effect
of perturbations on the agent dynamics. Finally,
in Section 4, the theory is extended to the case of
leader-follower models. In the second part of the
paper (Ferrari-Trecate et al., 2005) we show how
many of the basic concepts introduced here can
be fruitfully exploited for analyzing the behavior
of systems equipped with potential field based
control laws that guarantee, beside alignment, co-
hesion of the agents.

2. FUNCTIONAL ANALYSIS AND PARTIAL
DIFFERENCE EQUATIONS ON GRAPHS

We introduce basic notions of graph theory
(Bollobés, 1998). Let G be an undirected graph
defined by a nonempty set N of N nodes and a
set £ C N x N of edges. In our case, each node
represents an agent and without loss of generality
we assume that AV = {1,2,..., N}. Two nodes z

and y are neighbors if (x,y) € £. This means that
the agent x and y share the information about
their position and velocity. We use the notation
x ~ y for neighboring nodes and assume that
x ~ x always holds. The neighboring relations
are captured by the adjacency matriz A(G), i.e. a
square matrix of order N having entries A, , =1
iff # # yand v ~ y and A;, = 0 otherwise.
The number of neighbors to each node is the node
valency and the valency matrix V(G) of the graph
is a diagonal matrix of order N with entry V, .
equal to the valency of the node z. The Laplacian
matrix of the graph is defined as D(G) = V(G) —
A(G).

Two nodes = and y are connected by a path if
there is a finite sequence xg = z,z1,...,Z, = ¥
such that z;_; ~ x;. The graph G is connected
when each pair of nodes (z,y) € G x G is
connected by a path.

We summarize the main concepts of functional
analysis for vector functions f : N +— R? de-
fined over a graph? G by following closely the
exposition of (Bensoussan and Menaldi, 2004)
where scalar functions are considered. The partial
derivative of f is defined as

Oyf(x) = f(y) — f(z) (1)

and enjoys the following elementary properties:
Iy f(x) = =0 f(y) (2a)
Ouf(x) =0 (2b)

9y f(x) = 8y f(y) — 0y f(x) = uf(y).  (2¢)
The Laplacian of f is given by

Af(x) == 0 f(x) =+ 9,f(x). (3)

Yy~ Yy~

where the last identity follows from (2c) and (2a).
The integral and the average of f are defined,
respectively, as

IE =3 s 0= g AT

Let L?(G|RY) be the Hilbert space composed by
all functions f : A — RY equipped with the scalar
product and the norm

(f )i = /G o, f2 = /G TG

where || - || is the euclidean norm on RY. Note
that L? is isomorphic to RV9. We introduce now
the “Sobolev” space H!(G|R?) composed by all
functions in L?(G|RY) with zero average®. We
will use the shorthand notation L? and H! when

2 Rigorously, dom{f} = N. However, as customary in
graph theory, we use G instead of N or £ when no confusion
is possible.

3 As shown in (Bensoussan and Menaldi, 2004), the space
H' can be taught as the quotient space L2\ ~ with respect
the equivalence relation f ~ ¢ iff f — g is constant. This
construction is analogous to the one adopted in functional
analysis for defining Sobolev spaces (see (Dautray and
Lions, 1992)).



there is no ambiguity on the underlying domain
and range of the functions. In (Bensoussan and
Menaldi, 2004) it is shown that if G is connected,
H' is an Hilbert space endowed with norm

Iz =D D9, f(@))1%. (6)

zeN y~z

Note that ||-|| 1 is only a semi-norm on L?. In fact,
if f € L? is constant, then || f||z: = 0. It is also
easy to prove (Bensoussan and Menaldi, 2004)
that if G is connected and | f|lg: = 0, then
f is constant. Let H!(G|RY) denote the space
orthogonal to H'(G|R?). Apparently, H] is the
space of constant functions on G and dim(H1) =
q. Moreover, the decomposition L? = H' @ H} is
L?— orthogonal, i.e., [, ffe=0, Vfe H', ce

We conclude the section by summarizing the
fundamental properties of the Laplacian oper-
ator introduced in (3). First, note that A is
strongly related to the Laplacian matrix D(G). In
fact, we have that [(Af(1)T,..., (Af(N)T]T =
—(D(@)L)[fM)T, ..., f(N)T]T, where ® is the
Kronecker product and I, is the identity matrix
of order g. Thus, —(D(G) ® I,) is the matrix
representation of the linear operator A. The next
theorem clarifies the eigenstructure of the Lapla-
cian operator (Bollobds, 1998), (Bensoussan and
Menaldi, 2004).

Theorem 1. Let G be a connected graph. Then,

(1) the operator A : H! — H! has (N — 1)q
strictly negative eigenvalues and the corre-

sponding eigenfunctions form a basis for H';
(2) for f € L?, Af =0 if and only if f € H1.

Remark 1. Note that when A is defined on L2, it
has Ngq eigenvalues. In particular, in view of the
decomposition L? = H' @ H!, (N — 1)q eigenval-
ues are those considered in point (1) of Theorem 1
and the remaining ¢ eigenvaues are zeros (this
follows directly from point (2) of Theorem 1). We
stress that the eigenvalues of A (defined on L?) are
easy to compute since they coincide with those of
the matrix —(D(G) ® I,).

Remark 2. It is worth to highlight the analogy
between Theorem 1 and the corresponding re-
sults for the Laplace operator on Sobolev spaces.
Indeed, let G be an open, bounded and regular
subset of RN and let n be the outer unit nor-
mal at the boundary 0G. Let L?(G) and H(G)
denote the standard Hilbert spaces as defined in
(Dautray and Lions, 1992). Moreover, consider the
subspace V. = {f € H'(G) : [,f =0, Af €
L*(G), onf = 0}. Then, the Laplace operator
AV o= LAG), Af = Z?f:l% has count-
ably many, strictly negative eigenvablues and the
corresponding eigenfunctions form a basis for the

Hilbert space {f € H'(G), [, f = 0}.

We are now in a position to introduce Partial dif-
ference Equations (PdEs) on graphs. Let z(z,t) :
G x RT — RY be a function of two variables and
consider the initial value problem

a,t) = F(z(1)) (7a)
z(x,0) = Z(x) (7b)

where F : L2(G|RY) — L?(G|R?) is a continuous

operator. We call the equality (7a) a continuous-
time PdE with initial conditions (7b) and refer
to z(x,t) as the state of the PAE. Note that, for
example, one can have F' = A thus motivating the
term “PdE” used for (7).

As shown in (Ferrari-Trecate et al., 2004), PdEs
can be always recast in a system of ODE and
existence and uniqueness of the solutions to (7)
follow from the corresponding results for ODEs.
In the sequel we assume that there exists a unique
function z verifying (7) for ¢t € [0,+o00]. We
are interested in the effect of perturbations on
the projection of z(x,t) on suitable subspaces.
Assume that F(0) = 0 and consider a subspace
V C L?(G|R?). We denote by

fv=nmf

the projection of f € L?(G|R?) on V.

Definition 1. The origin of (7) is stable on V if for
allt >0

Ve>0, 30 >0: ||Zy]l2 <6 = |lzv(,t)|lz2 <e

(8)
If, in addition, there exists & > 0, n > 0 such that
vz € L?, V¥t > 0 it holds

2w (o t)llz2 < ke™™||Zv |2 (9)

then, the origin is globally exponentially stable on
V.

Note that if V = L2, stability on V coincides
with the standard notion of stability of the ori-
gin (Khalil, 1996). The next Theorem, that is
a straightforward generalization of the second
method of Lyapunov (see (Khalil, 1996)), can
be used for checking exponential stability of the
origin on V.

Theorem 2. Assume that there exists a unique
solution z(z,t) to (7), VZ € L2, Vt > 0. If there
exist a continuously differentiable functional W :
V — R and constants k1, k2, k3,a > 0 such that

klléllz: < W(E) < kall€ll72,

W(zy) < —ksllzvl72

VEeV  (10a)

(10b)

then, the origin of (7) is globally exponentially
stable on V.

Proof: The proof is reported in (Ferrari-Trecate et
al., 2004). |



3. ALIGNMENT IN LEADERLESS MODELS

The communication network between agents is
modeled in form of a graph G, which is supposed
to be connected. A simple agent model is the
approximated double integrator dynamics

Ty = Uy (11a)
Uy = Uy + Oeg (11b)
by = —Qey (11c)

where z € N is the agent index, r, € R?, v, € RY,
u, € R? are the agent position, velocity and
inputs, respectively, ¢ € N is the space dimension
(usually ¢ = 2 or ¢ = 3) and 8 # 0. The state
e, represent an error on the velocity dynamics,
exponentially decreasing with the same rate a > 0
for all agents. The errorless model is obtained by
setting the initial errors as e, (0) = 0, Vo € N/. We
consider the control law:

Uy = uy = — Z(UI — vy) (12)

T~y

that will be referred to as Laplacian control and
that is similar to the one proposed by Vicsek
(Vicsek et al., 1995) for discrete-time agent mod-
els.

We also say that alignment is achieved if there
exists a constant velocity v* such that v, — v*
as t — +oo for all agents x € G. In the errorless
case, a number of results on alignment in multi-
agent systems described by (11) and (12) are
available (Jadbabaie et al., 2003), (Saber and
Murray, 2003).

Remark 3. The error model (11c) can be justified
as follows. Consider the uncertain agent model

To = Uy (13a)
Vp = Vg + Uy + Uy (13b)

where e € R\{0} represents an unknown per-
turbation coefficient and @, an internal feedback
action. In Remark 4, we show that if u, = ul and
no correcting action is taken (i.e. @, = 0), the
control u, can not guarantee alignment to a non
zero velocity.

This shows the necessity of designing u, in order
to compensate for the effect of the perturbation.
In (Ferrari-Trecate et al., 2004), we exploit vari-
able structure control for designing an internal
feedback which guarantees that, after a finite
time, each agent behaves according to model (11)
with prescribed error decrease rate o and with

8 =a>

The agent velocity, input and errors can be seen as
vector-valued functions v(z,t) € RY, u(x,t) € RY,
e(z,t) € RY for x € N, t > 0. By using the
modeling framework presented in Section 2 and
the agent model (11), the collective dynamics is
captured by the PdEs:

v=Av+fe v(-,0)=0

é=—ae e(+,0)

(14a)

cL?
€ L? (14b)

I
™

where the agent positions have been neglected
since they do not influence the velocities and then
do not affect alignment. Note that, in absence of
errors and for a scalar function v, the PdE (14a)
formally coincide with the heat equation where x
is a point in an open, bounded and regular set G C
RY, v is the temperature and ¥ denotes an initial
temperature distribution * . Due to diffusion effect
of the Laplacian, it is not surprising that the tem-
perature becomes asymptotically constant on G.
In view of the similarities between classic Lapla-
cian and the Laplacian on graphs, highlighted in
Remark 2, asymptotic convergence of the velocity
v(z,t) to a function in H1 is expected. This means
that, asymptotically, all agents will move with the
same velocity, or, in other words, that alignment
will be achieved.

Remark 4. When the velocity dynamics is af-
fected by a persistent perturbation as in (13b) for
i, = 0, there are two possibilities: if ¢ < 0 the
only equilibrium of (13b) is v, = 0; if € > 0 no
equilibrium is compatible with (13b). This can be
easily seen by recasting (13b) into the PdE

0= (e+ A)v. (15)

In fact, by using Theorem 1 one immediately
verifies that if € < 0, all the eigenvalues of the
operator (e + A) (defined on L?) are negative.
Moreover, if € > 0 at least one eigenvalue of
(e+A) is positive. These results admit an intuitive
interpretation motivated by the analogy between
PdEs and PDEs. Indeed, when € < 0 [resp. € > 0],
equation (15) formally coincides with the heat
equation with dissipation [resp. heat generation],
and convergence of v to zero [resp. to infinity] can
be easily proved.

In the sequel, we prove that a globally exponen-
tially stable alignment can be guaranteed even in
presence of errors.

First, we introduce the decompositions
v=wv+0, vi(-t) € H', v = (v) € H] (16a)
e=e+e e(,t)€ H', e=(e) € Hl. (16b)

For finding the dynamics of v we test each side of
(14a) against all c € H1, i.e. we form the integrals

/@Tc:/(Av)Tc—i—ﬁ/ el'c (17)
G G G
Since Av = 0, and
e1,Av; € H' = /(Avl)Tc:/ech:O (18)
G G

one has that v verifies
/i)Tc: /f)Tc:ﬁ/ ele (19)
G G G

4 More rigorously, it coincides with the heat equation
on G with homogeneous Neumann boundary conditions
(Dautray and Lions, 1992), i.e. with null heat flow through
the boundary of G.




thus showing that the average velocity obeys to
the equation

v = Qe. (20)
From (14a) we also have
U+ U= Av, + Bey + [e (21)

and by using (20) we obtain
01 = Avy + Beq. (22)

In summary, the evolution of errors and velocities
is captured by the PdEs
¥ {U = pe (23)
€

Y {”1 = Avy + fe; =

é1 = —Qeq

where we assume that the initial conditions ver-
ify the decomposition (16), i.e. v1(-,0) = Py,
61(-,0) = Ppe, ’U(O) = PHif) and é(O) = PHié'

In view of (23), alignment is achieved if v; — 0 as
t — oo. In fact, for the PAE X, it is easy to check
that © converges to a function v* € H'. Then, if
v1 converges to zero, one would obtain v — ¥* as
t — oo.

Remark 5. For the errorless agent model, v is
constant in time and equal to the average of the
initial velocities. On the other hand, if e(x,0) # 0
the asymptotic velocity of the formation will be
affected also by the error dynamics.

The PdEs (23) open also the way to the study
of the stability of the alignment. In fact, one is
tempted to say that the alignment is stable if the
origin of ¥ enjoys the same property. However,
since v; and e; belongs to the subspace H', one
must resort to the notion of stability provided
by Definition 1. To this purpose, note that the

state of the PAE (14) is z = [vT T ]T and one is
interested in proving stability of the origin of (14)
on the subspace

V={[v] ef'] € H(GR?) x H'(GR?)} (24)

As a candidate Lyapunov functional we take the
energy W :V — R given by

1 0
W (vi,e1) = §||”1H2L2 + §||€1H2L2 (25)

where v > 0 is a parameter. The main stability
result is stated in the next theorem.

Theorem 8. The origin of (14) is globally expo-
nentially stable on V.

Proof: The functional W verifies the bounds (10a)
for k1 = min{1, 2}, ko = max{1,2} and a = 2.
By computing W, one obtains

W= [ of (dor 4+ 8e) — o [ flrf < (260)
G G

<[l 48 ofer —ar [ el (200)
G G G

where A is the maximum eigenvalue of the Lapla-
cian operator defined on H!. In view of Theo-
rem 1, we have A < 0. It can be shown that the
bound (10b) is verified with

2
ks :min{—;\,a’y—&— |26)|\}

By choosing v big enough, one obtains k3 > 0
and global exponential stability of the origin on V
follows from Theorem 2. |

We highlight that Theorem 3 guarantees expo-
nentially stable alignment irrespectively of the
magnitude of the error rate a.

4. ALIGNMENT PROPERTIES IN
LEADER-FOLLOWER MODELS

In this Section we use PdEs for analyzing the col-
lective motion of the agents in presence of a leader.
By leader, we mean a vehicle that moves according
to a prescribed constant velocity, independently of
the motion of all other vehicles. However, followers
connected to the leader use information on the
leader state in order to compute their control
inputs.

Let S be a subgraph of the connected graph G and
let the boundary of S be defined by: 95 = {y € G\
S : JxeS x ~ y}. The leader and the
follower are indexed by the nodes of 9S and S
respectively. Since we assume that the leader is
unique, we have 9S = {xr}. The closure of S is
given by S = SUIS =G.

We will show that the collective dynamics can be
modeled through Dirichlet boundary value prob-
lems, i.e. PdEs endowed with suitable boundary
conditions. To this purpose we first introduce the
relevant functional spaces. As in (Bensoussan and
Menaldi, 2004), we consider the Hilbert space
Hy(S) = {u € L*(S) : wups = 0}, equipped
with the norm

B =S S o, @i @)
TEN y~zx
Note that a function f € H}(S) is defined on S
and possibly non null only on S. The next theorem
is the counterpart of Theorem 1.

Theorem 4. Let G be a connected graph. Then,
the operator A : H}(S|R?) — L?(S|R?) has |S|q
strictly negative eigenvalues where |S| denotes the
number of nodes of S. Moreover, the correspond-
ing eigenfunctions form a basis for H} (S|R?).

Suppose, for simplicity, that the leader x has a
constant velocity vy. Let, by abuse of notation
vp(r) = vg, for all z € S. Note that Avy = 0,
because vy, € H1 (S). It turns out that the velocity
v € L%(S) can be split as

vo € Hy (S) (28)

and alignment to the leader velocity corresponds
to the condition vy — 0 as t — oo. If the followers

v =19+,



make use of Laplacian control, the collective dy-
namics results in the following PdE with boundary
conditions

T =g+ v reSs (29&)
o = Avgy + fe zes (29b)
€= —ae xeS (29¢)
vo =0 x €0S (29d)

endowed with the initial conditions r(-,0) =
7 e L% v(-,0) = 9 € H}, e(-,0) = ¢ € L%
In fact, (29¢) corresponds to (14b). The velocity
equation (29b) is obtained from (14a), by using
the decomposition (28).

Remark 6. Once more, the analogy between PdEs
and PDEs provides useful hints on the achieve-
ment of alignment. Note that, in absence of errors
and for v(z,t) € R, the PAE (29b) with (29d)
formally coincide with the heat equation on an
open, bounded and regular set S C RY with inho-
mogeneous Dirichlet boundary conditions. By in-
terpreting vy as a temperature, physical reasoning
leads to the conclusion that vy converges to zero,
as t — o0o. By reading the result in terms of the
collective dynamics, this means that alignment to
the leader velocity will be achieved.

For proving alignment, we adopt a Lyapunov
argument completely analogous to the one used
in Section 3. To this purpose, let z = [vg eT}T
be the state of (29) and consider the subspace

Vi = {[UOT eT1" e HA(S) x L2(G|Rq)}. (30)

along with the candidate Lyapunov functional
Wr, : VL — R given by

1
Wi = Sllvol2 + S lell3, for some y > 0. (31)

Theorem 5. The origin of (29) is globally expo-
nentially stable on V.

Proof: The proof, provided in (Ferrari-Trecate et
al., 2004), exploits the same arguments used in
the proof of Theorem 3. |

5. DISCUSSION AND CONCLUSIONS

In this paper we proposed the framework of
continuous-time PdEs for analyzing coordination
phenomena in multi-agent systems. Although we
considered a fairly simplified setup (i.e. agents
move according to a point-mass dynamics per-
turbed by errors and the structure of the com-
munication network is time-invariant) we believe
that PdEs provide a useful mathematical frame-
work also for dealing with more complex models.
First, many tools developed for continuous-time
PdEs can be straightforwardly applied to discrete-
time PdEs. For instance, all the results presented
in Sections 2 and 4 characterizing the Laplace

operator can be directly used in the discrete-
time case. Also the generalization of such prop-
erties to weighted Laplacian operators is pretty
easy and already provided in (Bensoussan and
Menaldi, 2004). In Part IT of the present paper, we
show that PdEs can be fruitfully applied for in-
vestigating the effect of nonlinear control schemes.
Future research will focus on the use of PdEs for
studying the impact of communication delays and
multiple leaders with non-constant velocities on
the collective dynamics.
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