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Abstract: In this paper, the problem of exploring stochastic graphs is addressed.
The definition of the entropy related to the a-priori unknown parameters (the
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a stochastic optimal control one. The application of exact Dynamic Programming
suffers the so-called curse of dimensionality. To overcome this drawback, an
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shown to generate a “proper” policy. Copyright c© 2005 IFAC
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1. INTRODUCTION

In this paper we consider the problem of exploring
an a-priori partially unknown graph. This gen-
eral problem can model a number of interesting
decisional and control problems such as extra-
planetary robotic exploration, see floor mapping,
search for free channels in communication net-
works, etc. The graph exploration can be for-
mulated as a problem in which a controller (or
Decision Maker-DM) must acquire all the infor-
mation about a finite set of unknown parameters.
From this point of view, the problem considered
in this paper is the discrete space version of pre-
vious works on the active identification problem
(Baglietto et al., 2003b; Baglietto et al., 2004) in
which the general problem is stated.

One of the first exploration problems formulated
on graphs was the on-line chinese postman prob-
lem (Deng and Papadimitriou, 1999): an agent
must traverse all edges of an unknown, directed
and strongly connected graph and return to the
starting vertex. For this problem the authors in-
troduced some heuristic algorithms and gave up-

per and lower bounds for them. A similar model
for the robotic exploration problem can be found
in (Baglietto et al., 2003b).

We address the problem in a very general setting,
where the DM sensors are affected by noise. In this
case the problem can be formulated as a stochastic
optimal control problem on a continuous but
finite dimensional state space. Moreover, under a
particular assumption, it is possible to consider a
discrete model in time and space and, by using the
concept of entropy, to reformulate the problem as
a stochastic shortest path problem (see (Bertsekas
and Tsitsiklis, 1996)).

By exploiting the concept of “frontier nodes” an
equivalent formulation to the original problem is
given, for which any policy is a “proper” one and
the Dynamic Programming (DP) value iteration
algorithm converges in a finite number of steps.
The complexity of the problem dealt with leads us
to consider techniques similar to Neuro-Dynamic
Programming (NDP) (see (Bertsekas and Tsit-
siklis, 1996),(Secomandi, 2000)). In such a way



the original functional optimization problem is
reduced to a nonlinear programming one consist-
ing in selecting the optimal values for the “free”
parameters of the neural approximators (see also
(Zoppoli et al., 2002) and the references therein).
Thanks to the powerful approximating properties
of the latter, the original problem can be approx-
imated to any desired degree of accuracy. All the
proofs are omitted for the sake of brevity.

2. STATEMENT OF THE PROBLEM

Let us consider a Decision Maker (DM) moving
on an undirected graph G = (V, E) where

- V = {1, 2, ..., N} is the set of nodes;
- E is the set of undirected links (i, j) connecting

the nodes i and j; let M = |E|;
- cij = length of link (i, j);
- Es ⊆ E is the set of stochastic links, whose

lengths can take on the values ci,j = Ci,j or
ci,j = ∞, where 0 < Ci,j < ∞ ; let Ms = |Es|.

For each (i, j) ∈ Es, let us define a random
variable θi,j that represents the existence of the
corresponding link, and can take on two values

θi,j =
{

1 if ci,j = Ci,j

0 if ci,j = ∞ .
(1)

Moreover, let θ = col[θi,j , (i, j) ∈ Es] and p(θ) the
related a-priori probability mass function. For the
sake of simplicity, a two value probability mass
function is considered. However, the technique
proposed in the following is suitable to be applied
in the case of more complex discrete probability
density functions.

Before starting, the DM perfectly knows the
topology of the graph, but it has only a probabilis-
tic knowledge on the subset Es of links. When the
DM visits a node n for the first time, the lengths
of every link departing from n become known.
The DM gathers information about any link (i, j)
not departing from n according to a given noisy
measurement equation g̃i,j(n, θ, ξ), where ξ is a
random vector noise affecting the measure. To
summarize this, let us introduce the following
measurement function

gi,j(n, θ, ξ) =



1 if ( n = i or n = j ) and θi,j = 1
0 if ( n = i or n = j ) and θi,j = 0
g̃i,j(n, θ, ξ) otherwise .

Moreover, let g(n, θ, ξ) = col[gi,j(n, θ, ξ), (i, j) ∈
Es]. At time t, when the DM is at node nt, the
measurement vector yt is obtained as

yt = g(nt, θ, ξt) (2)

where ξt is a general i.i.d. stochastic process. It is
worth noting that the above proposed measure-
ment equation can effectively model many real

exploration problems. As an example let think
to a robotic exploration problem, in which the
DM can acquire “perfect” information only on the
neighboring portion of terrain, but its sensors are
affected by an uncertainty that increases propor-
tionally with the distance. Another example is the
exploration of an “unknown” telecommunication
network, where the information about links not
departing from the current node can be corrupted
by noise. Without loss of generality, the links
adjacent to the starting node n0 will be assumed
to be a-priori known.

We shall assume the DM to have a perfect mem-
ory, then the information vector can be defined
as

It
4
= col [y0, y1, . . . , yt] , t = 0, 1, . . . .

Let p(θ|I) be the conditional probability mass
function of the stochastic vector θ when the
information vector I has been acquired. Such a
mass function can be initialized with the a-priori
mass function p(θ) θi,j ∈ Es and can be updated
by the Bayes law.

It will be useful to describe the movement of the
DM on the graph by introducing the following
elementary discrete-time dynamic system:

nt+1 = ut, t = 0, 1, . . . ,

ut ∈ U(nt, It) (3)

where n0 ∈ V and

U(i, I) =
{

j ∈ V : ∃ (i, j) ∈ E \ Es or

∃ (i, j) ∈ Es, p(θi,j = 1|I) = 1
}

is the set of “known” neighboring nodes. In par-
ticular, U(nt, It) corresponds to the set of all the
nodes connected to nt by a finite-length link.

At any stage t = 0, 1, . . ., the DM makes its
decision on the basis of the current node nt and of
the information vector It, that is, by the control
function

ut = γ(nt, It), t = 0, 1, . . . . (4)

We have described how the DM moves and ac-
quires information on the graph. Let us now define
the objective the DM must achieve. Informally
speaking, the goal of the DM is to gather all
the possible information about the graph with
the minimum path length. In order to formalize
this, in the following we shall use the concepts
of information and entropy as given by Shannon
(Shannon, 1948). The entropy related to the ran-
dom vector θ when the information vector I has
been collected is defined as

H(θ|I) = −
∑

θ̄∈{0,1}Ms

p(θ = θ̄|I) log p(θ = θ̄|I) .



Let

I(I ′, I ′′) = −∆H(I ′, I ′′) = H(θ|I ′)−H(θ|I ′′).

I(I ′, I ′′) represents the difference between the
“quantity of knowledge” on the stochastic para-
meters related to two different information vectors
I ′′ and I ′. In particular, I(It1 , It2) is the informa-
tion gain acquired by the DM in the time interval
[t1, t2]. At time t, given an information vector It

and the current position nt, the exploration task
can be considered “completed” if, in the future,
the DM cannot gather an information greater
than a given ε, i.e.,

lim
t̄→∞

max
It̄

I(It, It+t̄) ≤ ε (5)

subject to (2) and (3). The scalar ε represents the
desired accuracy. The existence of the maximum is
guaranteed by the boundedness of the information
gain, since I(I ′, I ′′) ≤ H(θ) ≤ |Es|, ∀I ′, I ′′ .
Let us denote as T the a-priori unknown time at
which the DM completes its exporation task by
satisfying the constraint (5), then the process cost
can be defined as

J
4
=

T−1∑
t=0

h(nt, ut) =
T−1∑
t=0

cnt,ut . (6)

We can now state the Exploration problem in
the form of a usual stochastic optimal control
problem.

Problem SGEP (Stochastic Graph Exploration
Problem) Find the optimal control function
γ◦ generating u◦0 = γ◦ (n0, I0) , . . . , u◦T−1 =
γ◦ (nT−1, IT−1) that minimize the expected value
of the cost J subject to the constraints (3) and
(5). T has to be viewed as an a-priori unknown
variable.

3. APPLYING DYNAMIC PROGRAMMING

The Stochastic Graph Exploration Problem de-
scribed in the previous section can be ideally
solved by means of DP. Let us remark that the di-
mension of the information vector It, t = 0, 1, . . .
grows with time. To avoid this heavy drawback,
we shall adopt an equivalent formulation for the
control function making use of a sufficient statistic
and, in particular, of the conditional probability
mass function p(θ|It) (see e.g. (Bertsekas, 2001)).

For the sake of simplicity and without loss
of generality, let us suppose that the variables
θi,j , (i, j) ∈ Es remain uncorrelated. Then the
sufficient statistic can be concisely represented by
means of the Ms-dimensional vector

pt
4
= col

[
pi,j

t , (i, j) ∈ Es

]

where pi,j
t

4
= p(θi,j = 1|It), (i, j) ∈ Es for

t = 1, 2, . . . and pi,j
0 are the a-priori probabilities

p(θi,j = 1) . Moreover, let us denote by

pt+1 = P+ (pt, yt+1)

the application of the Bayes formula at stage
t = 1, 2, . . . .

In the general case, when the measurement chan-
nel is affected by noise, the vectors pt, t = 0, 1, . . .
belong to a continuous space [0, 1]Ms .

Let us define the “augmented state” correspond-
ing to a node n ∈ V and a sufficient statistic p
as

x
4
= col(n, p) .

Then, with a little abuse of notation, the control
function (4) can be substituted by ut = γ(xt) .
Similarly we shall write U(x) instead of U(n, I).

Moreover, let us define as Ŝ
4
= V × [0, 1]Ms

the set of all the possible augmented states. Of
course, since the DM has a perfect knowledge on
the adjacent links, not all the nodes n ∈ V are
provided with all the free values of p ∈ [0, 1]Ms .
Then, in general, only the set S ⊂ Ŝ of feasible
augmented state has to be considered.

Application of DP yields

J (k+1)(x) = min
u∈U(n)

{
h(x, u)

+ E
θ,ξ

J (k)
[
col

(
u, P+(p, g(u, θ, ξ))

)]}
,

k = 0, 1, . . .

J (0)(x) =
{

J̃(x), ∀x ∈ S \ Sf

0, ∀x ∈ Sf
(7)

where Sf
4
= {x : Imax(x) ≤ ε} and, for a generic

augmented state x = col(n, p) , Imax(x) is the
maximum information gain (see (5)), achievable
by the DM when nt = n and pt = p . J̃(x) are
some upper bounds on the optimal costs J◦(x) .

In order to solve such a problem, a possibility
consists in resorting to approximating techniques
such as extended Ritz method or NDP (see for
example (Zoppoli et al., 2002; Bertsekas, 2001)).
In the following of the paper, we shall apply NDP
to the solution of the graph exploration problem.

For the sake of simplicity, we shall consider the
case where the DM’s “vision” is restricted to the
adjacent links. In such a simplified framework the
measurement equations can be written as

yi,j =





0 if (n = i or n = j) and ci,j = Ci,j

1 if (n = i or n = j) and ci,j = ∞
−1 otherwise .

where by −1 we mean that the DM acquires no
information on the parameter, i.e., the measure is
uncorrelated with the parameter. In this particu-
lar case the vector of measurement noises ξt makes



no sense (yt = g(nt, θ)), and will disappear from
now on. Each component of the function P+ can
be written as

pi,j
t+1 =



0 if (nt+1 = i or nt+1 = j) and ci,j = Ci,j

1 if (nt+1 = i or nt+1 = j) and ci,j = ∞
pi,j

t otherwise

and each probability pi,j
t , (i, j) ∈ Es can take

on only one of the three values 0 , 1 , and pi,j
0 .

Hence, the augmented state space S turns out to
be a discrete set with cardinality |S| < N3MS .
As a consequence it is possible to solve the graph
exploration problem by means of exact DP and
the recursive algorithm (7) yields the optimal
control function u◦ = γ◦(x) for any state x ∈ S
in a finite number of iterations. Note that, in
this case, the maximum information gain Imax(x)
achievable by the DM in a state x = col(n, p)
can be easily calculated by means of a simple
polynomial-time algorithm.

Unfortunately, even in such a simplified frame-
work solving Problem SGEP via the DP algorithm
(7) may require an unacceptable computational
time, unless very small instances of the problem
are involved. In fact, the number of augmentes
states is of order O

(
N3Ms

)
. Then we may incur

the “curse of dimensionality” when the number
Ms of stochastic links increases.

In order to mitigate this drawback, in the next
sections we shall adopt an approximate technique.
Unfortunately, this may lead to a suboptimal
control function which is not proper (a control
function γ is said to be proper if it drives the DM
from any x ∈ S to Sf in a finite number of steps).
In order to overcome this obstacle, we shall give
an equivalent reformulation of problem SGEP for
which all the possible policies are proper.

4. AN ALTERNATIVE FORMULATION

Following the lines of (Baglietto et al., 2003a),
let us define, for a state x = col(n, p), the set
of “frontier nodes” F̃(x) as the union all the
nodes adjacent to at least one stochastic link with
unknown length, i.e.,

F̃(x)
4
=

{
j ∈ V : ∃(j, k) ∈ Es, p

j,k = pj,k
0

}
.

For any x = (n, p), we shall denote as F(x) the
set of frontier nodes f ∈ F̃(x) such that the
shortest path sp(x, f) driving from node n to
node f through deterministic links (i.e, on the
deterministic graph (V, E \ {(i, j) ∈ Es : pi,j <
1})) does not cross any other frontier node f ′ ∈
F̃(x), f ′ 6= f .

Denote by U ′(x) = {sp(x, f) : f ∈ F(x)} the set
of the shortest paths driving from x to any node

in F(x). This set defines the admissible control
actions associated to a new Problem which will
be called SGEP′. In this framework, at any stage
t = 0, 1, . . . the DM chooses the next frontier node
to visit or, equivalently, the path in the graph
on the basis of the state x, i.e., u′ = γ′(x) and
u′ ∈ U ′(x) .

In the following, we shall denote by f(u′) the
frontier node associated to a path u′, and by
h′(x, u′) its deterministic length. Consequently, a
new discrete-time dynamic system can be intro-
duced (the integer T ′ is a stochastic variable):

nτ+1 = f(u′τ ), τ = 0, 1, . . . , T ′ − 1 (8)

xT ′ ∈ Sf (9)

u′τ ∈ U ′(xτ ) . (10)

Since a path u′τ ∈ U ′(xt) does not cross any
frontier node but f(u′τ ), all the state transitions
associated to such a path are deterministic except
for the last one which depends on the realization
of y(f(u′τ ), θ). Hence

pτ+1 = P+[pτ , g(f(u′τ ), θ)] .

We have now all the elements necessary to define
an alternative formulation of the cost (6)

J ′ =
T ′−1∑
τ=0

h′ (xτ , u′τ )

and to state Problem SGEP′.

Problem SGEP′ For every x ∈ S \ Sf , find the
optimal control function γ′◦ that minimizes the
expected value of the cost J ′ subject to (8)-(10)
(T ′ is the a-priori unknown time at which the DM
reaches Sf ).

According to the definition of the set of admissible
controls U ′(x) , at every time step τ = 0, 1, . . .
the DM visits a node adjacent to at least one
unknown stochastic link. Hence, after at most
Ms +1 steps, the DM has a perfect knowoledge of
the graph. Then the following proposition holds.

Proposition 1. All the policies for Problem SGEP′

reach Sf in at most Ms + 1 steps.

Given a control law γ′ for Problem SGEP′, it is
always possible to define an induced control law γ̄
for Problem SGEP, by choosing, for every state x,
γ̄(x) as the first node of the path γ′(x). Here and
in the following given a control law γ for Problem
SGEP, we shall denote as Jγ(x) the expected
value of the cost associated with such a control
law, i.e.,

Jγ(x)
4
= E

θ

{
T−1∑
t=0

h(xt, γ(xt))

}



under the constraints (2) and (3) with x0 = x and
ut = γ(xt) . Clearly given a control law γ′ for
Problem SGEP′ and the corresponding induced
control law γ̄ , we have J ′γ

′
(x) = J γ̄(x) .

The following theorem enlightens the relation be-
tween an optimal control law for Problem SGEP′

and the induced control law for Problem SGEP.

Theorem 1. Suppose that γ′◦ is an optimal con-
trol law for Problem SGEP′, and let γ̄◦ be the
control law for Problem SGEP derived from γ′◦.
Then γ̄◦ is an optimal control law for Prolem
SGEP.

In the following we shall consider Problem SGEP′,
since, in the light of Theorem 1, it turns out to
be equivalent to Problem SGEP. While, on one
hand, this choice requires a little computational
overhead, on the other hand, we can look for an
approximate solution without having to check if
it is proper (see Proposition 1).

5. APPROXIMATE VALUE ITERATION

Problem SGEP′ can be solved exactly by means
of a DP algorithm similar to (7). More specifically,
the following result can be claimed.

Proposition 2. The DP algorithm yields the op-
timal control function u′◦ = γ′◦(x) for any state
x ∈ S \ Sf in at most Ms iterations.

However, as stated previously, since the number
of the states S \ Sf grows exponentially with
the number Ms of stochastic links, for complex
instances of the graph it is not possible to find the
optimal cost function J◦(x) in a reasonable time
by using the “exact” algorithm. Hence, we shall
resort to an approximation technique that consists
in assigning a given structure to the cost-to-go
function. In such a structure, a certain number of
“free” parameters have to be determined in order
to approximate as well as possible the optimal
cost-to-go function J◦(x). Following (Zoppoli et
al., 2002), we choose as fixed-structure functions
the so called “one-hidden-layer” (OHL) networks.
This means that, for each node, the approximate
cost-to-go takes on the form

Ĵn(p, wn) =
νn∑

i=1

cn,i ϕ(p, wn,i), n = 1, 2, . . . , N

where νn is the number of parametrized ba-
sis functions of the n-th approximator and
wn

4
= col(wn,1, cn,1, wn,2, cn,2, . . . , wn,νn , cn,νn) is

the vector of “free” parameters to be tuned. Fur-
thermore, if we define the vector of all the pa-
rameters as w

4
= col ( w0, w1, . . . wN−1 ), then we

can write the approximate cost-to-go function Ĵ(·)
as
Ĵ(x, w) = Ĵn(p, wn), ∀x = col(n, p), x ∈ S \ Sf

Ĵ(x, w) = 0, ∀x ∈ Sf .

Among various possible parametrized basis func-
tions ϕ, we choose sigmoidal functions σ(w̄n,i ·
p + wn,0i). Then the approximators Ĵn are given
by OHL neural networks. As to the capability of
OHL neural networks to approximate the optimal
solutions the reader is referred to (Baglietto et
al., 2003a).

Clearly, following the guideline of the formulation
of Problem SGEP′, it is possible to associate a
control function to any given cost-to-go function
Ĵ by means of the DP operator. By construc-
tion, the resulting control law turns out to be
proper independently of the values of the cost-
to-go Ĵ(x), x ∈ S \ Sf .

We are now able to formulate a mathematical pro-
gramming problem that approximates the original
functional Problem SGEP′ to any degree of accu-
racy (the reader interested in the approximation
of functional stochastic optimization problems by
approximating parametrized schemes is referred
to (Zoppoli et al., 2002)).

Problem SGEPw Find the optimal vector w◦ =
col

(
w◦0 , w◦1 , . . . , w◦N−1

)
such that the control

function γ̂′ associated to the approximate cost-to-
go functions Ĵn(I, w◦n), n = 1, 2 . . . , N , minimizes∑

x∈{S\Sf} J ′̂γ
′
(x).

We now describe in some detail the “approximate
value iteration” algorithm that can be used to
determine w◦. Such an algorithm is similar to
the incremental approximate value iteration algo-
rithm described in (Bertsekas and Tsitsiklis, 1996)
but, in this case, N different neural networks are
trained at the same time.

Algorithm 1.

1. Choose randomly the initial weight vectors
w

(0)
n , n = 1, 2, . . . , N ; set k = 0;

2. choose randomly a state x(k) 4= col(n, p) ∈ S \
Sf ;

3. make one step of the value iteration algorithm
in the state x(k):

J̄
(
x(k)

)
= min

u′∈ U ′(x(k))

{
h′

(
x(k), u′

)

+E
θ

[
Ĵf(u′)

(
P+ (p, g(f(u′), θ)) , w

(k)
f(u′)

) ]}
;

4. update the weight vectors of the N neural
networks according to

w(k+1)
n = w(k)

n

− c1

c2 + k
∇wn

{[
Ĵn

(
p, w(k)

n

)
− J̄

(
x(k)

) ]2
}

and w
(k+1)
i = w

(k)
i , ∀i 6= n, n ∈ V ;



5. if
∑

x∈S\Sf

[
Ĵ
(
x, w(k+1)

)− Ĵ
(
x, w(k)

) ]2

> δ .

then set k = k + 1 and return to step 2.

Note that, since the number of feasible states
|S \ Sf | grows exponentially with the number
of stochastic links, for complex instances of the
graph G the computation of the summation in
step 5 may require too much time. Hence, such a
summation can be computed over a validation set
V S(k), composed by a given number α ¿ |S \Sf |
of admissible states.

6. NUMERICAL RESULTS

Let us consider a graph with 9 nodes and 6
stochastic links (see Fig. 1) and let us suppose that
the DM’s vision is restricted to the adjacent links.
Moreover let us suppose that ε = 0, i.e., the goal
of the DM is to explore all the reachable stochastic
links. The a-priori probabilities pi,j

0 have been
chosen equal to 1

2 .

In this case, we have |Ŝ| = 6561 and, after
the exclusion of all the unfeasible states, |S| =
4050. Given the simplicity of the graph and the
relatively small number of states, we can apply the
exact DP algorithm (which ends in 6 iterations)
to find the optimal control function γ′◦(x) and the
optimal cost to go J ′◦(x), ∀x ∈ S \ Sf .

   2
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Fig. 1. A simple stochastic graph.

The optimal solution has been compared with
the approximate solution obtained by following
the approach of Section 5. For each node a OHL
neural network with 10 hyperbolic tangent acti-
vation functions has been used. The neural net-
works have been trained by means of Algorithm
1. Let Ĵ be the approximate cost function after
the training process and let γ̂′ be the proper con-
trol function derived from the approximate cost
function Ĵ by means of the DP operator. For the
sake of comparison we considered the percentage
error between the approximate cost-to-go function
Ĵ and the optimal one J◦, that is,

PE(x)
4
=

∣∣Ĵ(x, w)− J◦(x)
∣∣/J◦(x), ∀x ∈ S \ Sf

and the percentage error between the cost func-
tion J γ̂′ and the optimal one J ′◦, defined as

PE′(x)
4
=

∣∣J ′γ̂′(x)− J◦(x)
∣∣ J◦(x), ∀x ∈ S \ Sf .

PE(x) PE’(x)

0
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15

V
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ue
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Fig. 2. Box plots of the percentage errors PE and PE′.

As can be seen from Fig. 2, even if the approxi-
mate function Ĵ does not represent a very good
approximation of the optimal cost function J◦, the
costs-to-go of the proper policy γ̂′, derived from
Ĵ , turn out to be very close to the optimal ones.

The choice of a very simple graph is motivated
by the possibility of a direct comparison with the
exact solution (see Fig. 2). However, the proposed
approach for the approximate solution of Problem
SGEP is well-suited to being applied to more com-
plex graphs, for which the exact solution cannot
be computed due to computational issues. A sim-
ulation analysis in this case has been performed
but it is omitted for the sake of brevity.
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