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Abstract: New types of weak forces measurements with Atomic Force Microscope
(AFM) are very challenging for experimental physics and call for new studies on
control strategies operating the AFM. It is thus necessary to first develop a precise
model of the cantilever with its sharp tip, in interaction with the scanned sample.
This paper presents a model of the cantilever, that is based on beam theory and
taking into account the influence of the long distance interaction forces. Copyright
c©2005 IFAC
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1. INTRODUCTION

Atomic Force Microscopy (AFM) is one example
of Scanning Probe Microscopy (SPM), which is ca-
pable of measuring the interaction force between
the sample and a sharp tip mounted on the end
of a soft cantilever (usually made of silicon with
rectangular or triangular shape). The topography
of the surface and many other properties can be
determined from the measured forces.

The AFM is a very complex instrument that in-
corporates broad control systems responsible for
excitation of the cantilever with mounted tip and
positioning of the measured sample underneath
it. New applications of the AFM require improve-
ments in measurement accuracy. As a main lim-
itation of achievable measurement sensitivity is
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thermal noise (Butt and Jaschke, 1995)(Giessibl,
1997). Thermally excited cantilever and its ran-
dom movement around its equilibrium position
is contributing in the total displacement of the
lever during scanning of the measured surface
(M.Ashhab et al., 1999). This is very critical
for new experiments in physics, like weak force
measurements and nano–manipulation. Therefor,
there is a need for new control strategies that can
deal with the thermal noise. At the present time
the standard control strategies for the cantilever
excitation are based on PI, PID controllers, which
give limited performance. Even if advanced con-
trol of AFM has been already proposed for the
excitation, the thermal noise is still limiting the
measurement accuracy.

Development of control systems that are respon-
sible for treading the thermal noise excitation are
asking for precise model of the cantilever in the
interaction with the surface and the influence of



the thermal noise in this system. The beam theory
is describing the behavior of the cantilever as a
clamped beam (Clough and Penzien, 1993) and
is capable to determine the contribution of higher
harmonics. This paper consider higher complexity
modeling of the cantilever, validated by practical
experiments.

2. CANTILEVER MODEL

Models are usually used for simulation of specific
properties of the levers and/or interactions. Of-
ten used models are based on simple mechanical
principles with a description as a second order
differential equation for the position of the free
end. Vibrating cantilever is described as a simple
oscillator with mass m attached to a spring with
stiffness k and a dashpot characterized by its
damping constant γ. The movement of the lever is
affected by external forces: the driving force from
the piezo bimorph Fdri, the interaction force Fint

and all perturbation forces Fper.

A better description of the free cantilever vibra-
tions comes from the beam theory, which is de-
scribing the movement of the lever very precisely
(Clough and Penzien, 1993) (Rast et al., 2000).
The cantilever is described as a beam clamped
at one end, while the other end is freely vibrat-
ing. This description includes different modes of
vibrations at their specific resonance frequencies.
The mathematical description of the movement is
based on the one-dimension Euler-Bernoulli equa-
tion that fully describes the dynamics of the rect-
angular cantilever (Clough and Penzien, 1993).
The equations describing the system wouldn’t be
so complex if it is assumed that all the significant
physical properties are constant along the span of
the beam. This means that the moment of inertia
I(x), Young’s modulus E(x), the mass per unit
length m̄(x), and the cross section need to be
constant everywhere on the cantilever.
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Fig. 1. Schematic of the cantilever mechanical
properties.

Most cantilevers used in AFM are rectangular at
their cross sections. The mathematical description

of free vibration for this system is described by
differential equation of fourth order:

EI
δ4v(x, t)

δx4
+ m̄

δ2v(x, t)

δt2
= 0 (1)

where v(x, t) is the time dependent transverse
displacement from the neutral position at position
x. The solution for Eq. 1 can be obtained eas-
ily by separation variables, using the substitution
v(x, t) = φ(x)Y (t). Expressing transformed func-
tion 1 in terms of trigonometric and hyperbolic
functions and setting the entire imaginary part to
zero leads to the solution

φ(x) =A1 cosαx+A2 sinαx

+A3 coshαx+A4 sinhαx (2)

where A1, A2, A3, and A4 are real constants
and α is parameter for existing harmonic mode.
The parameters can be found with the help of
boundary and linking conditions. Freely vibrat-
ing beam fixed on one side fulfills four bound-
ary conditions. The first two conditions are a
consequence of fixing the cantilever in displace-
ment and inclination to the driver at x=0. At
the fixed end the deflection is zero φ(0) = 0 and
also the slope φ′(0) = 0. The third boundary
condition claims that at x=L the torque force
vanishes EIφ′′(L) = 0 (zero bending). The fourth
condition means that the external force is zero
at the end of the cantilever EI(L)φ′′′ = 0 (zero
shear). Equation 2 have non zero solution that
has to fulfill condition cosαi = −(1/ coshαi), nu-
merical solution is α1 = 1.875, α2 = 4.694, α3 =
7.855, α4 = 10.996, αi

.
= (i − 1/2)π for i ≥ 5

The corresponding circular frequency for a given
solution i can be obtained as shown by

ωi = α2

i

√
EI

m̄L4
(3)

where i=1,2,3, . . . is the index of the resonant
frequency for a particular vibration mode. Now A2

can be determined from the boundary conditions
as a function of A1 for harmonic solutions with
specific harmonic frequencies ωi. The solution of
1 can be expressed as in 4, where each term in
the sum represents a vibration mode. It is the
product of a time dependent function sin(ωit)
and a function φi(x) which only depends on the
position x along the cantilever. Ci is the amplitude
of a certain vibration mode. The phase shifts δi

depend on the initial state (deflection, velocity)
of the cantilever only.

z =

∞∑

i=1

Cisin(ωit+ δi)φi(x)

φi(x) = (sinαi + sinhαi)(cos
αi

L
x− cosh

αi

L
x)



− (cosαi + coshαi)(sin
αi

L
x− sinh

αi

L
x)

(4)

The multi mode cantilever model can be described
as a linear time invariant system (Stark et al.,
2004) defined by its matrix of dynamicsA, matrix
of inputs B, matrix of output C and feed through
matrix D.

dt

D
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Fig. 2. Linear time time invariant model of the
cantilever.

ẋ(t) = Ax(t) +Bu(t) (5)

y(t) = Cx(t) +Du(t) (6)

where u(t) is an input vector, ẋ(t) is state deriva-
tion vector, x(t) is a state vector, y(t) is an output
vector of the cantilever model.

A=




0 1 . . . 0 0
−ω2

1 −ω1γ1 . . . 0 0
...

...
. . .

...
...

0 0 0 0 1
0 0 0 −ω2

n −ωnγn




B=
[
0 ω1 . . . 0 ωn

]

C=
[
0 1 . . . 0 1

]

D=
[
0 0 . . . 0 0

]
(7)

where the damping for all modes is γi = 1/Q.
The quality factor Q of the cantilever in the air is
usually between 10 and 500. Resonance frequency
of each harmonic mode is ω2

i = k/meff
i . Effective

mass meff
i (Rast et al., 2000) for harmonic mode

is:

meff
i =

3m

α4
i

=
3wtLρ0

α4
i

(8)

and for the stiffness of the cantilever stays:

k =
Et3w

4L3
(9)

where w is width, t thickness, L length, E stiffness,
and ρ0 is density of the cantilever.

3. THERMAL NOISE

In thermal equilibrium the thermal energy W
given to the system depends only on the temper-
ature of the system.

W =
1

2
kBT (10)

where kB is Boltzmann constant and T is the
system temperature. The calculation for multi
mode model of the cantilever has been done by
Hans–Jürgen Butt (Butt and Jaschke, 1995) and
for each harmonic mode i has been calculated
value of thermal noise displacement:

ẑ2
i =

12kBT

kα4
i

(11)

where k is the spring constant of the lever and
αi is condition constant specifying each harmonic
mode. Thermal energy is distributed to all har-
monic modes and sum of the energy over all modes
of the system has to be equal to total thermal
energy of the system.

W =

∞∑

i=1

Wi (12)

where Wi is thermal energy for harmonic mode i.
For each harmonic mode is the thermal energy:

Wi =
6kBT

α4
i

(13)

Simulated thermal noise is applied in form of
displacement (force) onto the linear model of the
cantilever as a white noise with normal distribu-
tion.

4. CANTILEVER IN INTERACTION WITH
THE SURFACE

The cantilever is affected by many interacting
forces while approaching and retracting from the
surface of the sample (Gotsmann et al., 1999). For
weak forces measurements, the most important
forces are van der Waals long distance attractive
intermolecular force and short distance repulsive
intermolecular forces. For our simulation we as-
sume that the other forces (electrostatic, chem-
ical) can be neglected by an appropriate design
and construction of the AFM and they don’t con-
tribute in weak forces measurements. The model
of the interaction forces is thus very simplified, but
this minimized interaction is still very complex
and many different behaviors of the lever can be
observed. The field of attractive (negative) and re-
pulsive (positive) forces F affecting the cantilever
is shown in fig. 3.

For distances greater than interatomic spacing,
the tip-surface separation distance z fulfil the con-
dition z > a0. The constant a0 is intermolecular
distance and fully depends on material properties
of the tip and the surface. For most of materials
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Fig. 3. Sketch of tip-sample interaction force

is a0 ' 5Å. Under this condition only attrac-
tive forces are present (there aren’t any repulsive
forces in the interaction). In most of the applica-
tions can be assumed, that the radius of the sam-
ple cylinder is significantly larger then the radius
of the tip. The approximation of van der Waals
interaction force can be simplified by Hamaker
theory (Giessibl, 1997) and the expression of the
attractive force between tip and surface is:

FvdW (z) = −
AHRs

6z2
0

(14)

where Rs is tip radius and AH is Hamaker con-
stant. For distances in order of interatomic spac-
ing, the tip-surface separation distance fulfil con-
dition z ≤ a0. Direct overlap between electron
wave functions (electron clouds) of the tip and the
sample give important contribution and strong re-
pulsive forces as a consequence of the Pauli princi-
ple are present. In the case of negligible energy dis-
sipation in the tip-sample contact, a Derjaguin–
Müller–Toporov (DMT) approximation can be
used in the repulsive regime:

FDMT (z) = −
AHRs

6a2
0

+
4

3
Eeff

√
Rs(a0 − z)3/2(15)

where Eeff is effective modulus of elasticity, see
(Giessibl, 1997).

5. SIMULATION OF HIGHER HARMONIC
MODES

The advantages of the multi mode model (7) are
especially higher frequencies contribution in the
cantilever movement. Computer simulation with
the model excited only by thermal noise fig. 4 and
comparison with the spectra measured on the real
system fig. 5 with the same lever has been done.

Table 1 shows the properties which have been used
for simulation and the information provided by
manufacturer of the cantilever.

Table 1. Data–sheet properties of the
contact silicon cantilever CSC12/50
(manufacturer UltraSharp) and table
values for silicon material properties.

Description Catalog Used

min typical max values

Length, L, [µm] – 350 – 350

Width, w, [µm] – 35 – 35

Thickness, t, [µm] 0.7 1.0 1.3 1.1

Res. freq., ω, [kHz] 7.0 10 14 –

Spring con., k, [N/m] 0.01 0.03 0.08 –

Density (Si), ρ0, [kg/m−3] – 2330 – 2330

Stiffness (Si), E, [GPa] 130 – 180 180

Computer simulations in Matlab/Simulink are
very time consuming and because of this draw
back the implemented model has only the first
four modes. This simplification made the simula-
tion and spectral analysis of the output signals
reasonably fast. For the first four modes the res-
onance frequencies are shown in figure 4. The
computed first resonance frequency is 11.8 kHz
which fits into the limit values given by the data–
sheet and the difference with its typical value is
small. The detected resonance frequency of the
real cantilever by microscope control system is
12.3 kHz. This difference could be caused by im-
perfect attachment of the chip with the cantilever
to the bimorph driver of the AFM during the
resonance frequency detection. Additionally the
driving bimorph has its own resonan frequency.
From measured frequency spectra figure 5 can be
determined first resonant frequency at 9,68 kHz.
The properties of the cantilever are slightly differ-
ent to the values used in model and the cantilever
has shape different from perfect rectangle. This
is given by manufacturing the cantilever and its
unperfect properties. Calculated spring constant
k of the lever has a value 0.045N/m.

The contribution of high harmonic modes into the
total displacement of the cantilever is displayed
in figure 4. Dynamic system has been excited
by thermal noise which is the natural noise that
is present in all systems with nonzero tempera-
ture, commonly known as a Brownian motion of
molecules of the system.

Table 2. Properties in simulation of the
interaction between contact silicon can-
tilever CSC12/50 and silicon surface.

Description Value

Hamaker constant (Si-Si), A, [J] 1.865 10−19

Tip radius, R, [nm] 10

Intermolecular Distance, a0, [nm] 0.38

Stifness effective, Eeff , [GPa] 10.2

The surface interaction model describing van der
Walls attractive forces and repulsive forces, that
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Fig. 4. Frequency spectra of the cantilever vibra-
tion excited by thermal noise, at the temper-
ature T=295.15K.
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Fig. 5. Measured frequency spectra of the can-
tilever (CSC12/50 – manufacturer Ultra-
Sharp) thermal vibrations with Digital In-
struments AFM.

are between the tip and the surfaces, has been im-
plemented into model of the cantilever which have
been described above. Approximation of these in-
teraction forces from equation 14 and 15 has been
used. As a first step has been done amplitude
calculation of interaction force as a function of
separation distance, see figure 6. The simulation
results and theoretical description given earlier are
matching, see figure 3. The simulation has deriva-
tion discontinuity at the limit of intermolecular
distance a0 due to separate models for attractive
and repulsive force. This discontinuity doesn’t
cause any instabilities.

In second step has been simulated the approach to
the surfaces with modelled cantilever and interac-
tion forces. The approach curve is shown in figure
7. With decreasing separation distance between
cantilever base and the surface h is increasing de-
flection of the lever d. At the distance h = 2.3nm
the attractive van der Walls force is stronger then
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Fig. 6. Calculated intensity of interaction force
between approaching object and surface.

the spring force of the cantilever and the lever
”snaps” to the surface. When the tip approaches
the surface closer, then intermolecular separation
distance a0 repulsive forces begin to contribute
and the cantilever settle at the intermolecular
distance from surface. When the cantilever snaps
to the surface all harmonic modes are excited
due to very fast change in the cantilever position
and speed. Transient vibration of the cantilever
coupled to the surface are shown in figure 7.
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Fig. 7. Simulated approach curve of the cantilever
to the surface. Thermal noise excitation is
visible at the long separation distance.

6. CONCLUSION

The main aim, of this work was to develop multi
mode cantilever model that is capable to describe
the behavior of the real measuring system with
good precision. Created model is taken into a
consideration the influence of higher harmonics
and their share on the total tip displacement of
the cantilever. Simulated frequency spectra is fully
fitting to theoretical expectation and has been
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Fig. 8. Measured approach curve of the cantilever
(CSC12/50 – manufacturer UltraSharp) to
the surface with Digital Instruments AFM.
Surface was silicon chip.

successfully confronted with measured data on the
real system with a cantilever of same dimensions
and properties. For a better understanding of the
interaction and its impact on cantilever behavior
a simple interaction model has been build using
interaction forces approximations. Simulated ap-
proach curve has good match with measured ap-
proach curve on Digital Instrument atomic force
microscope. The created model reach appropriate
accuracy to be helpful tool for further design
of control systems improving performance of the
AFM.
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