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Abstract: A blind separation problem in a multiple-input-multiple-output (MIMO)
linear time-invariant (LTI) system with finite-alphabet inputs is considered. A
discrete-time matrix equation model is used to describe the input-output relation
of the system in order to make full use of the advantages of modern digital signal
processing techniques. At first, ambiguity problem is investigated. Then, based
on the results of the investigation, a new identifiability condition is proposed
for the case of an alphabet set which is widely used in digital communication.
The proposed condition is compared to an existing condition in terms of the
probability of satisfying each condition for an arbitrary input matrix. A probability
bound such that an arbitrary input matrix satisfies the identifiability condition is
derived. Monte-Carlo simulation is performed to demonstrate the fact that the
identifiability conditions found so far are still very loose. Copyright c©2005 IFAC
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1. INTRODUCTION

For an impulse response of a linear system, a(t),
with an input s(t), the output z(t) can be given
by the convolution of the two functions,

z(t) =
∫ ∞

−∞
a(τ)s(t− τ) dτ + n(t) (1)

where n(t) is a corrupted noise whose statistics
may be known or previously measured.

A typical signal processing problem is to deter-
mine one of s(t) and a(t) from the measurement
z(t) when one of them is previously given or sta-
tistically known. If s(t) is given or known statisti-
cally, it is called a system identification problem.

On the other hand, if a(t) is previously known
or statistically given, the problem becomes an
equalization problem.

Optimal solutions of the above two problems are
relatively straightforward and well-known. How-
ever, in many important practical situations, it
happens that only the measurements are avail-
able. In this case it is required to resolve s(t) and
a(t) simultaneously from the measurement.

Blind estimation methods could be a good can-
didate to solve this problem. Blind methods ex-
ploit some side-information about the system or
the inputs. The finite-alphabet (FA) property or



cyclostationarity of the inputs may be some of the
examples used as side-information.

The early approaches to blind estimation and
identification methods were mainly done on the
signal separation in wireless communication sys-
tems. The methods are usually based on the sta-
tistical description of the system inputs. While
the techniques based on higher-order statistics
were developed at the beginning of the research
(Mendel, 1991; Tsatsanis and Giannakis, 1996),
second-order statistics play an important role in
the techniques developed later (Tong et al., 1995).
Subspace methods (Hua, 1996; Moulines et al.,
1995) based on second-order statistics method
have been reported with promising results.

A more direct approach than the above methods
is direct blind signal separation, proposed in sev-
eral works (Swindlehurst and Yang, 1994; Talwar
et al., 1996; van der Veen et al., 1997). These
works focused on separating the signal directly
without determining the system characteristics.
Talwar et al. (1996) proposed some blind sepa-
ration methods by exploiting the FA property of
digital inputs. In the work, the identifiability issue
was considered first and then two blind estimation
algorithms were proposed. Although more practi-
cal case was studied by Veen et al. (1997), both
methods still suffer from an ambiguity problem.

In this paper the ambiguity problem is further
investigated first. Based on the results of the
ambiguity analysis, a new identifiability condi-
tion, which is more useful in blind identification
process, will be proposed and analyzed.

This paper is organized as follows. In Section
2, the problem is formulated. In the following
Section 3, the ambiguity problem in the blind
separation is explained. In Section 4, a new identi-
fiability condition is proposed and then proved. A
probabilistic analysis with a computer simulation
are done in Section 5 to measure the validity of the
identifiability condition. A brief conclusion follows
at the end.

2. PROBLEM STATEMENT

2.1 Notation

The following notation will be used.

• Scalar sets are represented with special char-
acters such as N, Q, C etc.

• Vector and matrix sets are denoted with
calligraphic letters, for examples, B, D, H.

• Matrices are denoted with bold capital letters
such as A, D, T, and S. Vectors are repre-
sented with bold lower-case letters like a, b.

2.2 Problem

Consider an input-output relation of a discrete-
time MIMO LTI system which is given by

Z = AS + W, (2)

where Z, A, S, and W are measurement, system,
input, and additive noise matrix, respectively.

A typical example of this model may be a wire-
less multiple access system where the information-
bearing signal S is transmitted through the chan-
nel A to a base station. In some cases such as M-
ary phase-shift-keying in digital communication
systems, the elements of S usually come from a
FA set.

Main subject in the blind estimation problem is
to find an efficient way to separate A and S from
their product Z. In this paper, the problem of a
blind separation of the matrices A and S from
the measurement Z using the FA property of the
S is considered. It is very difficult to consider
the problem for a general case of the alphabet
set. Therefore, the consideration is limited to
the following case that is widely used in real
communication systems nowadays.

Let the sets, N = {+1,−1} and Q = {a +
jb | a, b ∈ N}, respectively, and denote the set of
all m× n matrices with elements from a set Z as
Mm×n(Z). Then the system model under no-noise
assumption of (2) may be rewritten as

Z = AS, (3)

with Z ∈ MM×N (C), A ∈ MM×d(C), and S ∈
Md×N (Q). C denotes the set of complex numbers.

The blind signal separation in this model requires
the factorization of the given measurement Z into
A and S. Basically, if there are no constraints on
A and S, there are infinitely many solutions for
the pair of {A,S}. In our problem, A is arbitrary,
but the possible values for the elements of S are
limited. Also, the matrices A and S are assumed
to be full rank.

3. AMBIGUITY

The model given in (3) can be further expanded
mathematically as

Z = AS = (AT−1)(TS) , ĀS̄ (4)

where T is any d × d full rank matrix and S̄ ∈
Md×N (Q). The relation in (4) implies the exis-
tence of another solution pair which can be rep-
resented as Ā , AT−1 and S̄ , TS.

Denote a set as Nc , {+1,−1, +j,−j} to define a
useful matrix set as follows.



Definition 1. A matrix set Dr(Nc) is defined as
the set of all possible r× r diagonal matrices with
their elements from Nc.

Then, it can be easily noted that T may be
basically described as T = PD where P is a
permutation matrix and D ∈ Dd(Nc). This fact
implies that, in the factorization process of Z
into (A,S) in (3), ordering (by P) and phase (by
D) ambiguities inherently follow. These kinds of
ambiguities will be called low-level ambiguity. If
there exist other T’s than in the form of PD
or DP, it is said that there exists high-level
ambiguity in the solution for S.

Since A and Ā are arbitrary and full rank, the
relation in (4) can be considered as a problem
given by

TS = S̄, (5)

where T is a d× d matrix, and S, S̄ ∈Md×N (Q).

3.1 Low-level ambiguity

As pointed out in the previous discussion, there
exist two different kinds of low-level ambiguity
inherently in the solutions for S of (3) which are
ordering and phase ambiguities. However, the low-
level ambiguity may not be a serious problem in
retrieving the original information as in the pre-
vious discussion in (Kwon and Fuhrmann, 1997).

3.2 High-level ambiguity

The fundamental theorem for systems of linear
equations gives the following facts for the exis-
tence of the solutions for T of (5). Define two
variables, r1 and r2, such that

r1 , rank (S) and r2 , rank ([ST S̄T ]). (6)

Then, if N ≥ d, which is the determined or
overdetermined case,

• equation (5) has solutions iff r1 = r2.
• if r1 = r2 = d, there exists a unique solution

which is given by T = S̄ST (SST )−1.
• if r1 = r2 < d, there are infinitely many

solutions.

Note that if N < d (which is underdetermined
case) then there always exist solutions. Also if
r1 6= r2 with N ≥ d, there are no solutions.

The system, Z = AS, is defined to be identifiable
if there exists only low-level ambiguities among
the possible solutions for S. Based on this defini-
tion on identifiability, an identifiability condition
for this system is considered in the following sec-
tion.

4. A NEW IDENTIFIABILITY CONDITION

Talwar et al. showed a sufficient identifiability
condition in (Talwar et al., 1996) as written in
the following Theorem 2.

Theorem 2. (Theorem 3.2 in (Talwar et al., 1996)).
Let Z = AS where AM×d is an arbitrary full-rank
matrix with d ≤ M , and Sd×N is a full-rank ma-
trix with elements in the set {±1,±3, · · · ,±(L−
1)}⊕ {±j,±j3, · · · ,±j(L− 1)}. If the columns of
S include all the L2d/2 possible distinct (up to a
sign) d-vectors with elements in {±1,±3, · · · ,±(L−
1)} ⊕ {±j,±j3, · · · ,±j(L − 1)}, then A and S
can be uniquely identified up to a matrix T with
exactly one non-zero element, {+1,−1, +j,−j},
in each row and column.

The identifiability condition described in this the-
orem can not be easily satisfied for a randomly
generated S with a reasonable size. Therefore, a
new identifiability condition is investigated.

4.1 Definitions

Definition 3. An equivalent class of a d-vector a
is denoted by E(a) and defined as

E(a) = {+a, −a, +ja, −ja}. (7)

Definition 4. (Element-wise (α, k)-rotation). Ele-
ment-wise (α, k)-rotation is defined as a transfor-
mation on a vector such that k-th element of the
vector is phase-shifted (or rotated on the complex
plane) by α.

Denote this operation on a vector x as T (x; α, k).
Also denote a vector ãk(θ) as ãk(θ) , T (a; θ, k).
Then if a , [a1 a2 · · · ak · · · ad−1 ad]T ,
ãk(θ) = [a1 a2 · · · akejθ · · · ad−1 ad]T .

Definition 5. Define C(a, θ) as a set of some equiv-
alent classes such that

C(a, θ) , {E(a), E(ã1(θ)), E(ã2(θ)), · · · , E(ãd(θ))}.
(8)

Then an equivalent class R(a, θ) is defined as the
set of all possible different C(a)’s where C(a) is
a vector set which consists of exactly one vector
from each element of C(a, θ).

Note that each element of C(a, θ) is indeed an
equivalent class. The cardinality ofR(a, θ) is given
by

|R(a, θ)| = |Q|d−1, (9)
which is the number of different C(a)’s.

Definition 6. A vector set O(S) is defined as the
set of all different column vectors of the matrix S.



4.2 A new sufficient identifiability condition

For the case of the alphabet,
Qφ , {ejφ, ej(φ+ π

2 ), ej(φ+π), ej(φ+ 3π
2 )}, where φ is

an arbitrary angle, the following theorem for the
identifiability is proposed.

Theorem 7. (A new identifiability condition). For
a linear system Z = AS, where A ∈MM×d(C) is
full-rank and S ∈ Md×N (Qφ), if any element of
either R(a, π

2 ) or R(a,−π
2 ) is a subset of O(S) for

any a ∈ O(S), then the system is identifiable.

Note that the smallest number of columns needed
to fulfill the identifiability condition is d+1.

PROOF. In the relation (5) which is

TS = S̄ (10)

where S̄ can be any element in Md×N (Qφ), but
not equal to S, by rearranging the order of the
columns of S and S̄ and then dividing them into
two sub-matrices each, it can be derived that

T[Sd+1 SN−d−1] = [S̄d+1 S̄N−d−1] (11)

where Sd+1 is a sub-matrix composed by the
necessary d+1 columns in S for the identifiability
and SN−d−1 is the remainder. Consequently, S̄d+1

and S̄N−d−1 are the corresponding sub-matrices
of S̄ to Sd+1 and SN−d−1, respectively. Then, our
proof will be enough to show that the solution of
T for the first part of (11) given by

TSd+1 = S̄d+1 (12)

since at most the second part of (11) will further
reduce the possible solution sets for T. Here
the equation is solved for T where the sets of
Sd+1 and S̄d+1 are given. However, note that this
is overdetermined system since there are d + 1
equations for each set. Therefore, the existence
of solutions will depend on the selection of Sd+1

and S̄d+1 pair, that is, the rank of [Sd+1 S̄d+1].
Rewriting (12) as

S†d+1T
† = S̄†d+1, (13)

d sets of d + 1 linear equations are given as

S†d+1t
†
k = s̄†d+1,k, k = 1, 2, · · · , d, (14)

where tk and s̄d+1,k are k-th row vectors of T and
S̄d+1, respectively. Thus it can be rewritten as




ejφ1 ejφ2 · · · ejφd

ej(φ1+θ)ejφ2 · · · ejφd

...
...

...
...

ejφ1 ejφ2 · · · ej(φd+θ)







t1
t2
...
td


=




ejψ1

ejψ2

...
ejψd+1


 ,

(15)
where the first matrix is a general representation
of Sd+1 which satisfies the condition in our the-
orem if θ = ±π

2 , t†k = [t1 t2 · · · td]T , and
s̄†d+1,k = [ejψ1 ejψ2 · · · ejψd+1 ]T .

Now consider the first and second equations in
(15) only. Then the result becomes

(ejφ1 − ej(φ1+θ))t1 = ejφ1 − ejφ1 . (16)

Thus, a solution for t1 is given by

t1 =
1√
2
e−j(φ1− θ

2 )(ejψ1 − ejψ2). (17)

Therefore, from all of the equation pairs which are
related to each of the second row to the last row of
S†d+1 with its first row, the solution for ti is given
by

ti =
1√
2
e−j(φi− θ

2 )(ejψ1−ejψi+1), i = 1, 2, · · · , d.

(18)

Inserting this solution into the first equation in
(15) gives a result given by

dejψ1 −
√

2ej(ψ1− θ
2 ) =

d+1∑

i=2

ejψi . (19)

Without loss of generality, ejψ1 is assumed to be
any one element of Qφ, for example, say ejψ1 =
ejφ. Then the problem can be solved graphically
from Figure 1.

Using Figure 1, it is concluded that d − 1 terms
among {ejψi}d+1

i=2 should be equal to ejψ1 and the
only remaining one term must be equal to ej(φ+θ)

or ej(φ−θ) in (19).

This result implies that d − 1 variables among
{ti}d

i=1 in (18) become zeros and the only nonzero
ti will have a value given by

ti = ej(φ−φi), (20)

where (φ − φi) ∈ {0, π
2 ,−π

2 , π}. Therefore, this
nonzero ti can only have a value from the set
{1,−1, j,−j}.
Similar results come out for all k in (14).

Now the columns of T should be independent from
each other to satisfy the fact that Sd+1 and S̄d+1

are full rank. Consequently, T should have exactly
one non-zero element in each row and column to
make itself full rank. Therefore our theorem shows
a sufficient condition for the identifiability.
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Fig. 1. Graphical representation of the relation
(19) where C = (d−1)ejφ, D = ej(φ+ π

2 ), E =
ej(φ+π), F = ej(φ+ 3π

2 ), G = −√2ej(φ−π
4 ), and

H = −√2ej(φ+ π
4 ).



Note that our theorem is invariant to any phase
shift of the alphabet. Therefore, it can be applied
to all types of FA sets if the elements of the
alphabet are related to each other by ±nπ

2 phase
shift with an integer n.

The problem is considered for the case where
the columns of S are different to each other in
only one element. Therefore, it is undoubted that
there may be a lot more possible structure of S
which satisfy the identifiability. Even though that
part is remained for future work, it can be shown
that the new identifiability condition can be easily
achieved with high probability in a reasonable
number of samples as shown in Section 5.

5. PROBABILISTIC CONSIDERATION

A bound of the probability that a randomly gen-
erated matrix satisfies the identifiability condition
is derived. Then Monte-Carlo simulation is done
to see if the bound is valid.

5.1 A bound

Consider a probabilistic bound for Theorem 2
first. Let L denote the alphabet size.

Lemma 8. Let F be the event that all the L2d

2
distinct vectors are picked in N independent sam-
ples. Then, A probabilistic bound for F can be
given as

Pr(F) ≥ 1− L2d

2

(
L2d − 2

L2d

)N

. (21)

PROOF. Omitted.

Figure 2 shows this bound when d = 4. It is
noticed that a hugh number of samples are needed
to fulfill the identifiability condition given in The-
orem 2 with probability close to one.

Now consider a bound for the new condition.

Lemma 9. For the identifiability condition given
in Theorem 7, a bound can be given by

Pr(A) ≥ 1− [
(d + 1)(1− 41−d)N

]2×4d−1

(22)
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Fig. 2. The value of (21) when d = 4.

where A denotes the event such that a randomly
generated d × N data matrix contains any com-
bination of the possible vector sets which are
sufficient to satisfy our identifiability condition.

PROOF. Let A|Si be the event that all the
d + 1 distinct vectors in a possible identifiability
set Si are included in N samples. As mentioned
earlier, there are 4d−1 different vectors which are
not connected to each other by the sign or real-
imaginary ambiguity. From this set of different
vectors, 2 × 4d−1 different combinations of d ×
(d + 1) matrices, which satisfy our identifiability
condition, can be constructed. Therefore, i has the
values from 1 to k where k , 2× 4d−1.

Then, it is easily shown that

Pr(Ac|Si) = Pr

(∪d+1
n=1Ac

n

) ≤
d+1∑
n=1

Pr(Ac
n|Si),

and
d+1∑
n=1

Pr(Ac
n|Si) = (d + 1)

(
1− 1

4d−1

)N

, (23)

for i = 1, 2, · · · , k.

Note that

Pr(Ac|Si) = Pr(Ac|Sj) for all i, j (24)

and

Pr(Ac|Si ∩ Ac|Sj) ≤ Pr(Ac|Si)Pr(Ac|Sj) (25)

with equality if and only if the events Ac|Si and
Ac|Sj are independent. However, the following
lemma tells us that all of them are not indepen-
dent in pairs.

Lemma 10. For any two d-vectors, a1,a2 ∈ O(S),
which satisfy the condition, E(a1) 6= E(a2), it is
true that |R(a1, θ) ∪R(a2, θ)| ≤ 2 if d > 3.

PROOF. Omitted.

Therefore,

Pr(Ac|S1 ∩ Ac|S2 ∩ · · · ∩ Ac|Sk) <

k∏

i=1

Pr(Ac|Si),

and
k∏

i=1

Pr(Ac|Si) =

[
(d + 1)

(
1− 1

4d−1

)N
]k

(26)

where k = 2× 4d−1.

Figure 3 shows the minimum numbers of samples
with respect to d to satisfy the identifiability con-
dition with approximately probability one. This
numbers were calculated using the bounds in (21)
and (22).
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greater than 0.9999: our case (solid line) and
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5.2 Monte-Carlo Simulation

Figure 4 shows a result of Monte-Carlo simulation
and the derived bound when d = 4. Under the
uniform distribution assumption, 10000 samples
are generated to calculate each point. It is seen
that the bound is very loose.
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Fig. 4. Probability for a data matrix S to satisfy
the identifiability condition.

It is noticed that the probability rapidly ap-
proaches to one within a reasonable number of
samples so that the probability becomes greater
than or equal to 0.9999 if the number of samples
is greater than 66.

Also it should be pointed out that this probability
is actually a lower bound. Therefore, it is expected
that the identifiability is achieved in fewer samples
than the numbers shown here.

6. CONCLUSION

In this paper, the identifiability problem in the
blind separation of A and S for the MIMO LTI
system equation, X = AS, was investigated. For
a full rank arbitrary A with a finite alphabet for
the elements of S, it was shown that there still
exist multiple solutions for S.

A new sufficient condition for the identifiability
was proposed. The new condition was compared
to the previously proposed condition in view of
the probability bound of satisfying the condition
for S. A quantitative probabilistic consideration of
satisfying this condition for a randomly generated
S was given.

The probabilistic analysis revealed that the prob-
ability of satisfying the identifiability for a pair of
randomly generated A and S rapidly approaches
to one within a reasonable number of samples. In
other words, it was verified that the identifiability
in the blind signal separation of a system given by
Z = AS can be achieved within far fewer samples
than it has been thought.

Monte-Carlo simulation showed the probabilistic
aspect of satisfying identifiability for randomly
generated signal matrices. From the numerical
examples, it can be concluded that the two iden-
tifiability conditions discussed here are still very
loose.
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