
 
 
 
 
 
 
 
 
 
 
 
 

LOCALLY CONSTRAINED OPTIMAL AND GLOBALLY  
STABLE BACKSTEPPING DESIGN 

 
 

A. Adhami, M. J. Yazdanpanah 
 
 

Control and Intelligent Processing Center of Excellence 
Department of Electrical and Computer Engineering, University of Tehran 

Tehran, Iran. P.O.Box:14395/515 
 
 
 

 
Abstract: Robust nonlinear controller design with constraint on the poles' location of 
the linear part of closed-loop system is proposed. The design method is based on the 
integrator backstepping procedure and linear constrained ∞H  for nonlinear strict-
feedback systems with disturbance also in strict-feedback form. The resulted closed-
loop system will be globally stable, while both local robustness and desired α-
stability are achieved. An analytic example is used to compare the performance of 
the proposed methodology with that of the locally optimal backstepping design with 
no closed-loop poles constraint. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Although optimal designs for linear systems have 
been discussed largely and applicable controllers 
such as LQR and ∞H  are used for these systems 
with Quadratic cost functions, for nonlinear systems 
there are no applicable methods to solve optimal 
design's problems. The main reason is our inability to 
solve Hamilton–Jacobi–Bellman (HJB) or the more 
general Hamilton–Jacobi–Isaacs (HJI) equations. 
Using linear optimal controller for nonlinear systems 
with controllable linearized term and quadratic 
approximation of related cost function leads to 
optimal closed-loop system in a neighborhood of 
equilibrium point, see (Isidori, 1995; Khalil 1996), 
but global stability is not guarantee by such 
controllers. (Ezal, et al., 1997; Ezal, et al., 2000) 
have introduced a nonlinear control design method 
for systems in strict feedback form which obtains 
local optimality via linear terms of the controller and 
global stability via higher order terms of the 
controller. Also stepwise algorithm is introduced in 
(Ezal, et al., 2000). Linear optimal part of this 
controller is the solution of the standard time domain 
linear ∞H  and design of nonlinear parts is based on 

backstepping procedure (Freeman and Kokotovic, 
1996; Krstic, et al., 1995). 
 
Linear ∞H  controller has been discussed in (Burl, 
1999; Green and Limebeer, 1995). Although this 
controller leads to stable closed-loop system with an 
arbitrary level of disturbance attenuation, it may 
place closed-loop poles near imaginary axis that 
leads to unrobustness in face of the model 
uncertainties and unmodeled dynamics. Also 
transient behavior of closed-loop system deeply 
depends on the poles places. To avoid of this 
phenomena, constrained ∞H  controller are 
suggested in (Adhami, et al., 2005; Yedavalli and 
Liu, 1995). In (Adhami, et al., 2005) this controller 
has been achieved by the solution of an optimization 
problem with standard ∞H  cost function and α -
stability constraint. 
 
In this paper, we design locally constrained optimal 
controller which guarantees global stability for 
nonlinear systems in strict feedback form. By using 
this method the resulted closed-loop system has 
some specification such as: 

• Globally Asymptotically Stability (GAS) in the 
absence of disturbances. 



• Has desired level of disturbance attenuation 
locally (local optimality). 

• Has desired states settling time for its linear part, 
which is dominant dynamic in neighborhood of 
the equilibrium point. 

 
This paper combines the methods of (Ezal, et al., 
2000) and (Adhami, et al., 2005), to enlarge the 
validity domain of local optimality, and make the 
closed-loop response faster. 
 
The organization of the paper is as follows. In 
Section 2 system specification is presented and the 
problem is formulated, we introduce in Section 3 the 
linear recursive design for linear constrained ∞H  
controller. Section 4 completes nonlinear design for 
globally stabilizing controller. Finally, simulation 
results are employed to show the effectiveness of the 
proposed method and comparison results are given 
which clearly indicate the advantages gained by the 
constrained optimal design. The paper ends with 
some concluding remarks in Section 6. 
 
 

2. PROBLEM FORMULATION 
 
Backstepping design method is applicable to systems 
in strict feedback form. Our procedure is also based 
on backstepping, thus it needs the same nonlinear 
system form, (1). 
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(2) shows the compact form of (1) 
 
                     wxGuuBxfx )()( ++=&                   (2) 
 

where [ ]′= nxxxx L21 is the n -dimensional 
state vector. Rtu →∞),0[:)(  and 

mn RRxtw →×∞),0[:),( are control and bounded 
disturbance inputs, respectively. ii gf , are assumed 
smooth functions and 0)0( =if . 
 
Our procedure has two main goals, global stability 
and local constrained optimality. To achieve the 
second goal, the constrained ∞H controller should be 
designed for the linearized system, therefore linear 
and higher order terms in (2) are separated. 
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where Axxfxf −= )()(

( and wBxGxG −= )()(
(

)0()( GxG −=  
contain only nonlinear terms, A  is in the form of (4). 
Obviously irrespect to elements of A , the pair 

),( uBA  is controllable. 
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Here after in this paper the i th submatrix of A  and 
its related state vector are defined as bellow. 
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3. LOCALLY OPTIMAL BACKSTEPPING 
DESIGN 

 
In this section the constrained ∞H  controller for the 
linear part of (3) is obtained and transformed to the 
suitable form for the backstepping procedure. Then 
the linear backstepping procedure is employed to 
show the stability and optimality achievements for 
the linear part of (3) closed with the transformed 
controller. 
 
In (Adhami, et al., 2005), it has shown that, the 
linear controller that achieves desired disturbance 
attenuating level γ  and places the closed loop poles 
in the left of the line α−=)Re(:1 sL in the 

planes −  is obtained through the constrained 
dynamic game ),(maxmin lll

wu
wuJ

ll

 with cost 

function (5) and lyapunov shaped constraint (6). 
 

          dtwwucxcxwuJ llllll )(),( 2
0

2 ′−+′′= ∫
∞

γ     (5) 
 

            0)()( =+′+′+ uBxALxLxuBxA uu αα       (6) 
 
where IAA αα += and 0≠′cc . (Adhami, et al., 
2005) converts this constrained optimization to 
unconstrained one by Lagrange multipliers, and 
obtains the optimal control law (7) and the worst 
case disturbance (8). 
 
                        xLPBx ul )()( +′−=µ                     (7) 

 

                           PxBxv wl ′= −2)( γ                         (8) 
 
where P  and L  are symmetric positive definite 
solutions of two Algebraic Riccatti Equations (ARE) 
(9) and (10). 
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The proper transformation that makes (7) and (8) 
suitable for backstepping is TTP ∆′= , where T  and 
∆  are found by unique cholesky factor of P , and 
have special forms as (11) and (12). 
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                        ),,(: 1 ndiag δδ K=∆                      (12) 
 
where iδ  is positive scalar. Now by xTz =  
transformation the linear part of (3) will be 
represented as (13). 
 

                        uBwBzAz uw ++=&                      (13) 
 
This transformation and transformed system have the 
following listed properties, which are used in the 
design procedure. For details see (Ezal, et al., 2000). 
 
Property 1: For, [ ] [ ] [ ]kkk xTznk =≤≤ ;1 where [ ]kT  
is invertible. 
Property 2: For nk <≤1  
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Property 3: For nk <≤1  
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also, 
                       ][][][

2
kkkwkl zBv ∆′= −γ                    (16) 

 
By this transformation (9) and (10) will be changed 
to (17) and (18), respectively. 
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where 11 −− ′
= LTTL  is positive definite matrix and 

1−= Tcc . Now the solution of constrain optimal 
controller are found through a backstepping 
procedure. Although this controller could be easily 
found by transforming (7), using the linear 
backstepping procedure to find it, is a preparatory for 
the nonlinear one, which will be discussed in the 
next section. 
 
In each step of the linear backstepping procedure 
virtual controller and lyapunov function are in the 
form of (19) and (20), respectively. 
 
                          ][][][ )( iiii xx αα =                        (19) 
 

where [ ]iiiii αααα L21][ := for ni <≤1 . 

        ][][][
2

]1[1][ )()( iiiiiiiii zzzzVzV ∆′=+= −− δ     (20) 
 
here concerning Txz =  transformation, the 
following required relations and definitions are 
obtained. 
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where [ ]iiiii aaaa L21][ :=  
 
Note that in each step, algebraic manipulations are 
omitted, and we just focus on the new results 
 
Step 1: Define 11 xz = and choose ]1[]1[]1[1 zzV ∆′=  as 
lyapunov function. From the property 2 (for 1=k ), 
relation (22) and by setting ]1[]1[]1[ α+= aa , 

11 ww bb =  when 122 α−= xz  selected as the virtual 

control law, the dynamic of 1z  is: 
 

                     lw wbzzaz 12]1[]1[1 ++=&                  (23) 
 
By using property 3 and completing the squares with 
respect to lw , Derivation of 1V  leads to (24). 
 

             
211

2
1

22

]1[]1[]1[1

2

)(

zzvwww

zLBBLcczV

llll

uu

δγγ +−−′

+′+′′−=&

          (24) 

 
where 1lv is defined by (16). It is obvious that 

]1[)( LBBLcc uu ′+′  is (symmetric) positive definite 
scalar (matrix in the next steps). So that if 02 ≡z , 

0)(1 →tz  as ∞→t  for all 2)( Ltwl ∈ , and )(1 tz  is 
bounded for all ∞∈ Ltwl )( , (Teel, 1999). Also in the 
absence of a disturbance, 01 =z  is GAS. 
 
Step i: is similar to (Ezal, et al., 2000), but with the 
similar changes as step1. 
 
Step n: In this step zzV ∆′=  is chosen as candidate 
lyapunov function for transformed system (13). 
Using relation (17) and completing the squares with 
respect to lw  and lu  to the derivative of V , we 
obtain: 
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where 
                       zLBz ul )()( +∆′−=µ                     (26) 
 

By setting )(zu ll µ= , V&  satisfies the following 
inequality. 
 



                 lll wwuzcczV ′+−′′−≤ 22 γ&               (27) 
 
This final step complete our linear backstepping 
design. According to the result (Teel, 1999), (27) 
shows that the transformed system (13) with 
controller (26) and its states: 

• is GAS when 0=lw  
• remain bounded for bounded disturbances 
• converge to zero for 2L  disturbances. 

 
 
4. GLOBALLY STABILIZING BACKSTEPPING 

DESIGN 
 
The nonlinear backstepping design is based on linear 
one which discussed in section 3. In this procedure at 
step i, the linear transformation (19) are completed 
by nonlinear terms in the form of (28). 
 
                   )(ˆ)( ][][][][ iiiiii zzz ααα +=                (28) 
 
where iα̂  contains only higher order terms which is 
employed to cancel undesirable nonlinear terms in 

iV&  and attenuate the disturbances. At the end of the 
step i, )(:)( ][1]1[11 iiiiii xxxz αφ −== ++++  is chosen 
as virtual control low for the next step. At the final 
step, this constructive procedure leads to the lower 
triangular Diffeomorphism, )(xz Φ= . Unlike to 
(Ezal, et al., 2000) and the other common 
backstepping methods, at this final step the Control 
Lyapunov Function (CLF) is not constructively 
completed. As these steps are similar to the same 
steps in (Ezal, et al., 2000), we just focus on the 
main and new results. 
 
Step 1: Define 11 : xz =  and choose ]1[]1[]1[1 zzV ∆′=  
as storage function. By adding and subtracting 

)( 11 zα  which defined in (28), dynamics of 1z  is 
rewritten as (29). 
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Concerning (29), derivation of 1V  leads to (30). 
 

    

[ ]]1[]1[1111
2

11]1[]1[

1211
2

1
2

2
]1[]1[]1[1

)(5.2

)(2

)(

zbbggfz

xzvw

wwzLBBLcczV

ww

uu

∆′−′++∆′+

−+−−

′+′+′′−=

−γα

αδγ

γ

((

&

 (30) 

 
where 
                ]1[]1[]1[]1[

2
]1[1 )(:)( zzGzv ∆′= −γ             (31) 

Now, by choosing 1α(  as (32) and assuming 
)( ]1[12 zx α≡ , the inequality (33) will be satisfied. 
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According to (Teel, 1999), (33) shows that 1z  
subsystem is GAS in the absence of any disturbance. 
Also 2L  and ∞L  disturbances leads to converged 
and bounded 1z , respectively. 
 
Step i: In this step, upon the obtained relations and 
results in the previous step with 

)(: ]1[1 −−−= iiii zxz α  and ][][][ iiii zzV ∆′=  

definitions, the ][iz  dynamics and iV&  are calculated. 

By selecting iα̂  as (34), the dissipative form of iV&  is 
achieved, (35). 
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Assuming )( ][1 iii zx α≡+ , so that: 
 

       wwzLBBLcczV iiuuii ′+′+′′−≤ 2
][][][ )( γ&     (35) 

 
(35) shows that ][iz  subsystem satisfies the 
conditions of (Teel, 1999), thus this subsystem has 
the required specifications similar to ]1[z  (see step 
1). 
 
Step n: Now the )(xz Φ=  Diffeomorphism is 
completed by calculating nα̂ from (34) for ni = . 
Clearly the linear part of this Diffeomorphism is Tx , 
therefore the nonlinear transformed system (36) 
includes (13) as its linear part. 
 

           wzGzfuBwBzAz uw )(ˆ)(ˆ ++++=&         (36) 
 
In the next section the design procedure is completed 
by founding suitable control law. 
 
 

5. NONLINEAR CONTROL LAW 
 
Desired nonlinear controller is found through a 
theorem. 
 
Theorem 1: A positive definite function )(zr  with 
property 1)0( =r  exists, such that the closed-loop 
system (36) with following feedback control law 
 

               zLBzrzu u )()()( 1 +∆′−== −µ             (37) 
 
Achieves 

• Local optimality with respect to the cost 
functional (5). 

• Local stability−α , (satisfies constraint (6)). 
• 0)( →tz  as ∞→t  for all 2)( Ltw ∈ . 
• ∞∈ Ltz )(  for all ∞∈ Ltw )( . 
• GAS equilibrium point in the absence of 

disturbance. 



Proof: We will find )(zr  such that the derivation of 
0)( >+∆′= zLzV  (CLF) with respect to dynamical 

system (36) goes negative. This derivation could be 
written in the form of (38). 
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If 11 ≥−r , the 4th  term and the last one in the right 
hand side of (38) are nonpositive and negative 
functions. Since nδ  and nnl  are positive scalars, (41) 

shows that, if 01 ≥−r , the 5th term of (38) is also 
nonpositive. 
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Now the proof will be completed if the )(zr  which 
makes )(zq  positive, is found. In (Ezal, et al., 
2000) by factoring out of η̂  as (42) and the same 
factorization of ccQ ′=:  (43), and definition (44), 
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the sufficient condition (45) for )(zr  is obtained 
which makes )(zq  positive. 
 

                          )(1)(1 zzr σ+≥−                        (45) 
 
(46) introduces a function for )(zr  which satisfies 

the sufficient conditions,( 1)0( =r , 11 ≥−r  and 
(45)). 
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where 1)1(,1)( =−≥ εσε . 
 

By this choice for )(zr , V&  satisfies all conditions of 
(Teel, 1999), thus the global stability and disturbance 
attenuating properties are met. Since 1)0( =r , the 
control law (37) in the neighborhoods of the origin 
converts to (26), so all local properties (optimality 
and α -stability) are met.             ▄ 
 

6. NUMERICAL EXAMPLE 
 
Suppose nonlinear system (47), 
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and local ∞H  cost functional (48), 
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and α -stability constraint with 4=α . 
 
Four different controllers are designed for this 
system. 
 

• Linear ∞H : 211 78.106.1 xxu −−=  which places 
the linearized closed-loop poles at -0.89 ± j0.52. 

 
• Linear constrained (α -stabilizing) ∞H : 

212 820 xxu −−=  which places the linearized 
closed-loop poles at -4 ± j 0.91. -4 ± j 0.91 

 
• Nonlinear with local optimality: 3u  see (Ezal, et 

al., 2000). 
 

• Nonlinear with local constrained optimality: 
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Figures 1 and 2 show the phase trajectories and 
Regions of Attraction (RA) (hatched domain) of 
closed-loop systems with 1u  and 2u , respectively. 

 
Fig. 1. Phase plane for linear optimal design 
 

 
Fig. 2. Phase plane for linear constrained optimal 

design. 
 



Obviously, 2u leads to larger RA. It means that by 
using α -stability constraint in design procedure, the 
RA (where the linear part of system is dominant) 
becomes larger, thus the desired local performance 
(e.g. disturbance attenuation and rate of regulation) 
are aimed on the larger domain. 
 
Figure 3 compares the responses of closed-loop 
systems with nonlinear controller 3u  and constrained 

nonlinear controller 4u , with no disturbance. 

 
Fig. 3. states regulation for nonlinear designs without 

disturbance. 
 
Note that, setting 4=α  leads to sec1≅st  (settling 
time) for linear systems, but the settling time in 
figure 3 (with constrained nonlinear controller) is 
little more than expected value, because the initial 
states values are not chosen on the RA of linear 
constrained and unconstrained controllers and the 
nonlinear term of (47) is excited. 
Figure 4 shows the states behaviors in the presence 
of the 2L  disturbance, (49). 
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Fig. 4. States regulation for nonlinear designs with 

the energy-bounded disturbance. 

The last two figures clearly illustrate the desired 
effect of entering α -stability constraints in the local 
optimality. 
 

7. CONCLUDING REMARKS 
 
Based on (Ezal, et al., 2000), the design procedure is 
introduced to achieve three goals: local optimality in 
the sense of ∞H , local α -stability and global 
stability. The linear backstepping procedure is 
employed to find linear transformation for the local 
goals and nonlinear backstepping procedure 
completes Diffeomorphism transformation. Finally 
through a theorem, the desired nonlinear control law 
for transformed system is obtained and the 
achievement of the goals is proved. Numerical 
example to illustrate the advantages of locally 
constrained optimal and globally stable design is 
employed. 
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