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Abstract: In this paper we propose an extension of port Hamiltonian systems,
called conservative systems with ports, which encompass systems arising from the
Irreversible Thermodynamics. Firstly we lift a port Hamiltonian system from its
state space manifold to the thermodynamic phase space to a contact vector field
with inputs and outputs. Secondly, we define a more general class of contact vector
field (called conservative system with ports) generated by a function corresponding
to the power of a physical system and illustrate it on a simple example of
irreversible system. Copyright c©2005 IFAC
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1. INTRODUCTION

Port Hamiltonian systems appeared to be a useful
generalization of input-output Hamiltonian sys-
tems to deal with the modelling and control of
a great variety of physical systems, essentially
electro-mechanical systems (van der Schaft and
Maschke, 1995) (Ortega et al., 2002). Their defini-
tion is based on two objects. Firstly the Hamilto-
nian function, a smooth real valued function of the
differential manifold N defining the state space
and representing the total energy of physical sys-
tems. And secondly a geometric structure called
Dirac structure (Courant, 1990) and defined on
the product manifold of the state space manifold
N with some vector space W of external variables.
This Dirac structure is a vector subbundle of
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TN × T ∗N × W × W ∗ where TN denotes the
tangent bundle, T ∗N the cotangent bundle of N
and W ∗ the dual vector space of W . The skew-
symmetry property of the Dirac structure implies
the losslessness of the port Hamiltonian system
(van der Schaft and Maschke, 1995). In terms of
network modelling of physical systems, the Dirac
structure represents the interconnection structure
of the system and the skew-symmetry property
corresponds to a generalization of Tellegen’s the-
orem and implies the power continuity of the
interconnection structure (Maschke and van der
Schaft, 1997).
Irreversibility has been introduced by adding a
dissipative term in the dynamics (Dalsmo and
van der Schaft, 1999), however at the expense
of loosing the conservation of the Hamiltonian
function. Hence the Hamiltonian function does no
more represent the total energy of the system and
the system does no more express the first principle



of Thermodynamics. The main obstacle for the
simultaneous expression of both the irreversibility
and the energy conservation in port Hamiltonian
systems is the linearity, i.e. the vector bundle
structure, of the Dirac structure (Eberard and
Maschke, 2004).
In this paper we propose an extension of port
Hamiltonian systems in order to cope with sys-
tems arising from the Irreversible Thermodynam-
ics. These systems will be called conservative sys-
tems with ports and shall obey a power balance
equation (leading to a lossless system), while re-
laxing the requirement of linearity and still de-
fined on a manifold endowed with a differential-
geometric structure, actually a contact manifold.
In the first part we shall recall how a canonical
contact structure (Libermann and Marle, 1987)
may be associated with the thermodynamic phase
space associated with some differential manifold
(Herman, 1973) (Mrugala, 1978). It will be re-
called how Gibbs’ relation, defining the thermo-
dynamic properties of a system, may be expressed
as a Legendre submanifold of the thermodynamic
state space. In the second part, we shall lift a port
Hamiltonian system from its state space manifold
N to the thermodynamic phase space by defining
some contact vector field with inputs and outputs.
The generating function of this contact vector field
is actually the expression of a virtual power of the
port Hamiltonian system. In the third part, we
shall generalize this contact vector field to the so-
called conservative system with ports in such a
way to cope with irreversible systems and shall
illustrate this generalization with an example.

2. THE THERMODYNAMIC PHASE SPACE
AND ITS PROPERTIES

In this section we shall define the manifold of the
thermodynamic phases or thermodynamic phase
space on which we shall define the conservative
systems with ports. Consider a smooth (C∞)
differential manifold denoted by N and define
the associated thermodynamic phase space T as
follows (Mrugala, 1980) :

T := R× T ∗N 3 (ε, x, ex).

In accordance with the terminology of network
modelling (Breedveld, 1984) and port-Hamiltonian
systems (van der Schaft and Maschke, 1995), the
manifold N is called the space of the energy vari-
ables, denoted by x. The elements ex of the cotan-
gent space T ∗xN are called the coenergy variables
conjugated to the energy variable x.
It can be shown that T is a (2n + 1)-dimensional
manifold endowed with a canonical contact form
θ. We shall recall the following proposition, char-
acterizing a contact form (Libermann and Marle,
1987)

Proposition 1. A 1-form θ on a (2n+1)-dimensional
manifold M is a contact form if and only if θ ∧
(dθ)n is a volume form on M. Then, (M, θ) is
called contact manifold.

Furthermore the canonical contact form θ is writ-
ten in the canonical coordinates (ε, xi, ei

x) as fol-
lows (Darboux’s theorem) :

θ = dε−
n∑

i=1

ei
xdxi, (1)

where d denotes the exterior derivative. The ter-
minology thermodynamic phase space is borrowed
from the formulation of thermodynamical sys-
tems. Following the pioneering work of Gibbs’
(Gibbs, 1928) and Carathéodory (Carathéodory,
1909), there is now a well-established differen-
tial formulation of thermodynamic systems which
uses the contact manifold T (Herman, 1973)
(Mrugala, 1980). In the context of Thermodynam-
ics, the energy variables x ∈ N may be identified
with the extensive variables on which the conser-
vation laws are written. The coenergy variables
ex ∈ T ∗N may be identified with the intensive
variables conjugated to the extensive variables x.
And the variable ε ∈ R represents the internal
energy.

Example 2. In the case of a simple thermodynam-
ical system, (a single constituent, single phase
system) the extensive variables are S the entropy,
V the volume or N the number of moles of the
system. The conjugated intensive variables are
the temperature T , the pressure P (actually its
opposite −P ) and the chemical potential µ. Hence
the thermodynamic phase space T is :

T := R× R3 × R3 3 (U, S, V, N, T, (−P ), µ),

and the contact form is

θ = dU − TdS + PdV − µdN, (2)

where U is the internal energy. One recognizes
that any submanifold of the thermodynamic phase
space T satisfying θ = 0, satisfies Gibbs’ equations
that is characterize the set of equilibrium states
(i.e. the thermodynamic properties of the simple
system). This illustrates that the contact struc-
ture is the fundamental structure of the thermo-
dynamic phase space underlying Gibbs’ equations.

It may be shown in general (Herman, 1973) that
the thermodynamic properties (also called ”equi-
librium states”) of any thermodynamic system
are defined using the canonical contact form on
the thermodynamic phase space. The thermody-
namic properties are defined by a particular class



submanifold of the thermodynamic phase space,
called Legendre submanifolds and defined as fol-
lows (Libermann and Marle, 1987).

Definition 3. A Legendre submanifold of a (2n +
1)-dimensional contact manifold (M, θ) is an n-
dimensional manifold of M that is an integral
manifold of θ.

A Legendre submanifold may also be defined
locally by using some canonical coordinates as
follows.

Theorem 4. (Arnold, 1989) For a given set of
canonical coordinates and any partition I ∪ J of
the set of indices {1, ..., n} and for a differentiable
function F (xI , e J

x ) on a neighborhood V of M,
the following equations determine locally a Leg-
endre submanifold L of (M, θ)

e I
x =

∂F

∂xI
xJ = − ∂F

∂e J
x

ε = F − e J
x

∂F

∂e J
x

. (3)

Conversely, every Legendre submanifold ofM2n+1

is defined in a neighborhood of every point by
these equations for at least one of the 2n choices
of the subset I.

Now consider the particular case when the gen-
erating function F is a differentiable function on
N , that is I = {1, .., n} and J = ∅. The Legendre
submanifold is the set :

LF :=
{

f, x1, . . . , xn, e1
x =

∂F

∂x1
, . . . , en

x =
∂F

∂xn

}
.

If the function F is the (internal) energy of the
system, then this expression amount to define the
1-form dxF . In general however the definition of
the Legendre manifold, according to the definition
3 is coordinate-free which is of great practical
importance in Thermodynamics. Indeed the ex-
perimental and numerical data of the thermody-
namic properties are mostly not expressed in the
extensive variables x but in terms of the intensive
variables ex. That means that the energy function
F or its differential dxF are not explicitly given,
but the Legendre submanifold is given in some
other coordinates.

3. LIFTING PORT HAMILTONIAN SYSTEMS
ON THE THERMODYNAMIC PHASE SPACE

In this section, we shall lift a Port Hamiltonian
System (PHS) defined on a pseudo-Poisson man-
ifold to a particular vector contact field on the
thermodynamic phase space T .

Definition 5. (Libermann and Marle, 1987) A
vector field X on the contact manifold (T , θ) is
called a contact vector field if and only if there
exits a differentiable function ρ such that :

LXθ = ρθ, (4)

where LX denote the Lie derivative with respect
to the vector field X.

The definition that we shall mainly use, is the
local definition of a contact field in some canonical
coordinates as follows (Arnold, 1989).

Definition 6. For every function f̂ defined on a
contact manifold (M, θ), one can associate a par-
ticular vector field X̂f̂ called contact field and
defined in local coordinates as follows :

˙


ε
x
ex


 =




0 0 −eT
x

0 0 −Id
ex +Id 0







∂εf̂

∂xf̂

∂ex f̂


 +




f̂
0
0


(5)

where ∂xK denotes the partial derivative of the
function K with respect to x. One says that X̂f̂

is generated by f̂ . Furthermore, the equation (4)
is satisfied for ρ = ∂ε f̂ .

Secondly, before performing the lift on the ther-
modynamic phase space, let us recall the defini-
tion of a port Hamiltonian system (van der Schaft
and Maschke, 1995) defined on a pseudo-Poisson
manifold (Marle, 2000).

Definition 7. Let N be a differential manifold
endowed with a pseudo-Poisson bracket denoted
by {., .}. A port Hamiltonian system is defined by
a Hamiltonian function H0(x) ∈ C∞(N ), an input
vector u(t) = (u1, . . . , um)T function of t, m input
vector fields g1, . . . , gm on N , and the equations :





ẋ = Λ#(dxH0(x)) +
m∑

i=1

ui(t) gi(x)

y j
p = Lgj .H0(x)

(6)

where yp = (y 1
p , . . . , y m

p )T is called the port
output variable (or port conjugated variable), LX

denote the Lie derivative with respect to the
vector field X and Λ is the pseudo-Poisson tensor
associated with the generalized Poisson bracket
{., .}.

In the sequel, we denote by XH0 = Λ#(dxH0(x))
the Hamiltonian vector field on N generated by
H0 (the drift vector field of a port Hamiltonian
system).
Thirdly, we shall lift of a Port Hamiltonian System



into the contact vector field on the thermody-
namic phase space T = R × T ∗N generated by
the following map :

H̃(ui,u∗i )(x, ex) := H̃0(x, ex) +
m∑

i=1

ui(t)H̃i(x, ex)

+
m∑

i=1

u∗i (t)H̃
∗
i (x),

(7)

with H̃0(x, ex) = 〈ex, XH0〉, H̃i(x, ex) = 〈ex, gi(x)〉
and H̃∗

i (x) = Lgi
.H0(x), and where ui are the

input time functions and u∗i are additional inputs
time functions that we call the adjoint variational
inputs.

Remark 8. Let us notice immediately that the
generating function H̃ has the dimension of
power and not of energy like in the Hamiltonian
function of port Hamiltonian systems correspond-
ing to physical systems.

The function (7) generates a contact field on the
thermodynamic phase space, denoted by X̂

H̃
and

expressed as follows in the canonical coordinates
of T :

˙


ε
x
ex


 =




m∑

i=1

u∗i Lgi .H0

X̃
H̃


 (8)

where X̃
H̃

denotes the Hamiltonian vector field
generated by H̃ on the cotangent space T ∗N
with respect to the canonical symplectic Poisson
bracket {·, ·}s (of a cotangent bundle (Libermann
and Marle, 1987)). The dynamics corresponding
to the vector field X̃

H̃
may be decomposed in the

following way :

ẋ = XH0(x) +
m∑

i=1

ui gi(x)

ėx = −
〈

ex,
∂

∂x
XH

〉
(x)−

m∑

i=1

u∗i
∂

∂x
(Lgi .H0) (x)

It may be seen that the dynamics of the energy
variables x is precisely the port Hamiltonian sys-
tem on N , hence the lifted system indeed projects
on it. The dynamics of the co-energy variables
ex is precisely state equation of the adjoint vari-
ational systems (Fujimoto et al., 2002; van der
Schaft and Crouch, 1987) of the port Hamiltonian
system (6).
However the contact vector field X̂

H̃
does not, in

general, leave invariant the Legendre submanifold
generated by the Hamiltonian function H0 and
denoted by LH0 . This means that the thermody-
namic properties of the system (corresponding to
the first principle of Thermodynamics, the energy

properties) are not conserved by this contact vec-
tor field. Therefore we shall now characterize the
conditions under which the Legendre submanifold
LH0 is invariant. And we shall use the following
theorem proposed in (Mrugala et al., 1991) :

Theorem 9. Let L be a Legendre submanifold of a
contact space (M, θ). Then a contact vector field
X̂f is tangent to L if and only if f vanishes on L.

Therefore let us compute the restriction of the
generating function H̃(ui,u∗i )(x, ex) defined in (7)
to the Legendre submanifold LH0 :

H̃|LH0
=

m∑

i=1

(ui + u∗i )Lgi(x).H0(x), ∀ u∗i ∈ U∗i . (9)

This leads to the following sufficient condition
in order to leave the thermodynamic properties
invariant.

Proposition 10. A sufficient condition for the lifted
functional H̃ defined in (7) to generate a contact
field X̂

H̃
preserving the Legendre submanifold as-

sociated with the energy LH0 is that u∗i = −ui for
all i in {1, . . . ,m}.

It is interesting to relate the invariance condition
given in (9) with the power balance equation of
the port Hamiltonian system on the base manifold
N . Indeed assume that proposition 10 is satisfied,
then the condition of invariance amount to the
power balance equation of the PHS on N :

H̃|LH0
(x̃) =

dH0/dt︷ ︸︸ ︷
〈dxH0(x), Λ#

J (x)dxH0(x)〉+
m∑

i=1

ui 〈dxH0(x), gi(x)〉︸ ︷︷ ︸
Lgi(x).H0(x)

−
m∑

i=1

uiLgi(x).H0(x).

(10)

Hence H̃|LH0
≡ 0 is equivalent to the power

balance :

dH0

dt
−

m∑

i=1

ui Lgi .H0︸ ︷︷ ︸
y i

p

= 0. (11)

In conclusion, we shall define the lift of the port
Hamiltonian systems of the definition 7 on the
thermodynamic phase space T as the contact
vector field generated by the function (7) which
satisfies the conditions of the proposition 10.

Definition 11. The lift of the port Hamiltonian
system of definition 7 on the thermodynamic



phase space T is the contact vector field generated
by the function:

H̃ = ΛJ(ex,dxH0) +
m∑

i=1

ui 〈ex − dxH0, gi〉. (12)

4. CONSERVATIVE SYSTEMS WITH PORTS
WITH RESPECT TO A CONTACT

STRUCTURE

In this section we shall propose the definition
of conservative systems with ports that extend
port Hamiltonian systems in the sense that they
are generated by a more general class of function
than the functions of the lifted port Hamiltonian
systems given in (12).

Definition 12. A conservative system with ports
is defined by the thermodynamic phase space
T = R × T ∗N 3 (ε, x, ex) = x̂ associated with
some differentiable manifold N 3 x, a Legendre
submanifold L (associated with the canonical con-
tact form θ on T ), a space of external variables
W 3 fp and its dual W ∗ 3 ep and the contact
vector field X̂

Ĥ
on T generated by the function

Ĥ ∈ C∞(T ×W ×W ∗) such that :

Ĥ(ε, x, ex, ep, fp) := 〈ex, fx〉+ 〈ep, fp〉+ ϕ(ε)(13)

where fx is a tangent vector of N at x depending
on (x, ex, ep, fp) and ϕ ∈ C∞(R), satisfying the
invariance condition

Ĥ|L ≡ 0 (14)

and the differential equation :

˙̂x = X̂
Ĥ

(15)

Remark 13. Notice that, for a certain pseudo-
Poisson tensor Λ#

J on N , by choosing fx =
Λ#

J (dH0)+gi, fp = u ∈ Rm and ep = −〈dxH0, gi〉,
one recovers immediately the dynamics (8) when
ϕ is identically zero.

We shall now illustrate this definition on the very
simple system of two fluids in thermal interac-
tion that have been already presented in the port
Hamiltonian frame in (Maschke, 1998). Here, we
want to illustrate how the definition of conser-
vative system with ports on a contact structure
allows to formalize the thermodynamic properties
and the generation of the heat and entropy fluxes
in an independent way.

Example 14. Consider a closed system Σ consti-
tuted by two media in contact, only exchanging
thermal energy with no volume variation. Σ is
characterized by its internal energy U , and the

pair of conjugated variables (Si, Ti) (entropy, tem-
perature) of each medium i. Let N = R2 and
consider the contact space (R× T ∗N , θ) with the
contact form θ = dε− ei

xdxi = dU − TidSi.

A particular choice of the energy function U will
define the thermodynamic properties of the sys-
tem. On the other hand the heat and entropy
fluxes in the two media will be defined indepen-
dently by, for instance, Fourier’s conduction law
which leads to the following definition of the vec-
tor field:

fx = R(x, ex)Λ#
s (dU), (16)

where Λ#
s (dU) denotes the Hamiltonian vector

field, generated by the internal energy with re-
spect to the intrinsic Poisson tensor onN (derived
from the canonical symplectic structure on a 2-
dimensional manifold) and with

R(x, ex) = λ(ex)(1/e1
x − 1/e2

x), (17)

ei
x 6= 0, λ being Fourier’s heat conduction coef-

ficient. Then consider the function Ĥ = 〈ex, fx〉
and its contact field :





ε̇ = −eT
x 〈ex,

∂fx

∂ex
〉

ẋ = fx + 〈ex,
∂fx

∂ex
〉

ėx = −〈ex,
∂fx

∂x
〉,

(18)

one obtains a contact field describing our system
on the whole contact space (excepted the zero
section for ex). Ĥ fulfills the conditions given in
the definition 12.
Now consider the dynamics of the system re-
stricted on the Legendre submanifold of energy LU .
Then

〈ex,
∂fx

∂ex
〉|LU

= 〈dU,
∂R

∂ex
Λ#

s (dU)〉 = 0 (19)

and the dynamics of (18) becomes ε̇ = 0 that
we expected (conservation of energy), ėx =
−〈dU,R ∂

∂xΛ#
s (dU) and ẋ = fx|LU

. The dynamics
of the extensive variables then becomes :





dS1

dt
=
−1
T1

λ(T1 − T2)

dS2

dt
=

1
T2

λ(T1 − T2).
(20)

It is worth noting that the equation (17) is indeed
defining a nonlinear relation, between the vector
field fx and the one-form ex, which is zero on the
Legendre submanifold (i.e. satisfying the power
continuity) but does not define a Dirac structure.



5. CONCLUSION

In this paper we have proposed a generalization
of port Hamiltonian systems defined on pseudo-
Poisson manifolds to some contact fields with
inputs defined on a contact manifold. This con-
tact manifold corresponds to the thermodynamic
phase space associated with a set of extensive
variables of a physical system.

Therefore we have firstly lifted the port Hamil-
tonian system on the contact manifold associated
with its state space. This has lead to a contact
vector field with inputs generated by a function as-
sociated to the Hamiltonian function and defined
with respect to the pseudo-Poisson bracket. For
physical systems this function has the dimension
of power. We have then shown that this contact
fields leaves invariant the Legendre submanifold
associated with the Hamiltonian function of the
port Hamiltonian systems if the power balance
equation is satisfied.

Secondly we have proposed the definition of a class
contact fields with inputs that generalize the lifted
port Hamiltonian systems. Its generating function
is defined by the canonical duality product on the
thermodynamical phase space. It has also the di-
mension of power, however it should only meet the
requirement to leave some Legendre submanifold
invariant. Finally the definition is illustrated on a
very simple example of heat conduction.

This definition of conservative systems with ports
may also be extended to constrained systems and
leads to a very similar property of composition as
for port Hamiltonian systems on Dirac structures
(Maschke and van der Schaft, 1997) what will be
the object of future work. It is also of interest to
investigate in which respect this opens the way of
larger classes of stabilizing feedback laws.
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