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Abstract: Two recent contributions to the literature (Kouvaritakis et al., 2000;
Imsland et al., 2004) have shown how to use offline analysis to reduce online
computation while enlarging the feasible regions of a control law. Both methods
make use of an augmented system so this paper gives some proper discussion of
their differences and similarities and in particular it gives new insight to the structure
of the solutions. Following on the paper then discusses the potential of both methods
and makes proposal for future developments. Copyright c©2005 IFAC
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1. INTRODUCTION

One of the conflicts within model predictive con-
trol (MPC) is how to obtain a large feasible region,
that is the operating region within which the
closed-loop input, output and state do not violate
constraints, and at the same time retain optimum
performance. The conundrum is that algorithms
giving large feasibility regions often give relatively
poor performance and vice versa. For instance it
is well known that detuning the control law will
result in smaller input variations and therefore
inputs are less likely to violate constraints.

In practice, it is not clear what impact retuning
might have on feasibility or performance and in
fact one might argue that the formulation of an
algorithm to do a systematic trade off is still an
open question. A possible solution is to use a
dual mode MPC algorithm (Scokaert and Rawl-
ings, 1998; Rossiter, 2003), that is one which al-
lows degrees of freedom for the first nc control
moves and then assumes some fixed (terminal)
control law thereafter. Such an algorithm guar-
antees optimal performance near the origin, but
feasibility is dependent on both the choice of the
terminal law and nc. In theory one could increase

1 Presently with SINTEF ICT, Applied Cybernetics, N-
7465 Trondheim, Norway

nc as much as required to achieve the desired
feasibility region, but large values of nc are usually
frowned on in the MPC community. The alterna-
tive of detuning the terminal law has an impact
on performance.

Another issue of equal importance is how to en-
sure robust stability and feasibility. In this case
the same conflicts arise but the more usual MPC
algorithms using quadratic programming (QP)
are not appropriate due to the difficulties of
testing constraint satisfaction over the uncertain
system 2 . As such authors turned to approaches
based on ellipsoidal invariant sets as LMI solvers
could be used efficiently for this case. An example
is Efficient Robust Predictive Control (ERPC)
(Kouvaritakis et al., 2000), for which an unex-
pected added bonus was that the online computa-
tion actually became much simpler and increasing
nc had only a relatively small impact, so higher
values could be used.

The downsides of ERPC are the restriction to
ellipsoidal regions, which is not a topic discussed
here, and that the computational load and con-
ditioning of the offline algorithm does not scale
well with nc. This is because the algorithm still

2 Recent work is beginning to tackle this limitation
(Pluymers et al., 2004)



adopts a conventional dual mode structure, nc free
moves followed by a fixed law. To overcome this
limitation, other authors (Imsland et al., 2004)
considered how to add more dynamics into the
control solutions and hence to achieve gains in
feasibility without recourse to large nc; this they
denoted GERPC. The purpose of this paper is to
give better insight into the ERPC and GERPC al-
gorithms and hence to propose sensible directions
for further development.

Section 2 gives some background to the algo-
rithms, Section 3 focuses on insight, Section 4
on illustrations and the paper ends with some
proposals. We note that although robust control
is a key motivation for the ERPC and GERPC
algorithms discussed hereafter, it is not a key issue
in the comparisons here.

2. BACKGROUND

This section gives some more details about dual
mode MPC algorithms and in particular ERPC
and GERPC. This is necessary background for the
new insights and developments of Section 3.

2.1 Overview of linear MPC

Assume discrete state space models

xk+1 = Axk + Buk. (1)

Define performance, either predicted or actual, by
the cost

J =
∞∑

k=0

xT
k Qxk + uT

k Ruk. (2)

Let the ‘predicted’ control law (Rossiter et al.,
1998; Scokaert and Rawlings, 1998) be:

uk = −Kxk + ck k = 0, . . . , nc − 1
uk = −Kxk k ≥ nc

(3)

where ck are d.o.f. available for constraint han-
dling. This formulation allows d.o.f. during tran-
sients and assumes a fixed state feedback in the
asymptotic behaviour.

One can show that, for K the (unconstrained)
optimal (Rossiter, 2003), J takes the form

J = CT WDC + p (4)

where C = [cT
0 , . . . , cT

nc−1]
T , WD = diag(W, . . . , W ),

W = BT ΣB+R, Σ−(A−BK)T Σ(A−BK) = Q+
KT RK. The term p is not dependent on the d.o.f.
C and hence can be omitted.

Assume that the process is subject to constraints:

u ≤ u ≤ u; x ≤ x ≤ x. (5)

Then it can be shown the constraint satisfaction of
the predictions for model (1) in conjunction with
control law (3) is equivalent to membership of the
the maximal controlled admissible set (MCAS),
that is:

Sc = {x : ∃C s.t. M0x + N0C ≤ d0}. (6)

Definition of M0, N0, d0 are omitted as standard
but cumbersome. Also let the MAS be given as
S0 = {x : M0x ≤ d0}.

Finally, the MPC law is given by minimising J (4)
subject to (6).

Algorithm 2.1. MPC algorithm: (Scokaert and
Rawlings, 1998) At each sampling instant, per-
form the optimisation:

min
C

J = CT WDC s.t. M0x + N0C ≤ d0. (7)

Use the first block element of C in control law (3).
Note that x ∈ S0 ⇒ C = 0.

2.2 Conflicts for nominal MPC

The major conflict is between the volume of
the feasible region Sc (6) and the achievable
performance.

• If nc is large enough (Scokaert and Rawlings,
1998), one can show that the MCAS is the
largest feasible space possible and moreover
the control law is the global optimum.

• In general, for computational (and sometimes
robustness) reasons, nc is chosen small.

• If nc is small, then the volume of the MCAS
maybe dominated by the implied state feed-
back K within (3), hence a highly tuned K
could give rise to small MCAS and a lesser
tuned K could give much larger feasible re-
gions.

• Conversely, if K is poorly tuned, then the
cost function is dominated by poorly per-
forming predictions and hence the closed-
loop control may also be severely suboptimal.

The designer has to get a balance between the
volume of the feasible region Sc, the computa-
tional load (implied by nc) and the implied perfor-
mance (affected by K). There are currently no sys-
tematic tools for achieving this balance. Authors
have therefore looked at ways of maximising the
feasible region without sacrificing too much per-
formance and while utilising a computational in-
expensive optimisation. However, unsurprisingly,
there is a hard limit on what can be achieved
in this trade off when in essence, for a fixed nc

there is only one variable to play with, that is K.
Moreover, changes in K change the shape as well
as the volume of Sc and it can be hard to make
precise judgements as to what is better.

2.3 ERPC

ERPC (Kouvaritakis et al., 2000) was formulated
to deal with the robust case and hence was based
on ellipsoidal invariant sets. Leaving aside this
difference for now, this section outlines how the
algorithm is set up to maximise the feasible region.

First augment the system (1) with mc future
control moves (the vector f = [cT

0 , . . . , cT
mc−1]

T ),
to get an augmented model of the form:

zk+1 =

[
A−BK B

0 IL

]

︸ ︷︷ ︸

Ψ

zk; IL =





0 I 0 ··· 0
0 0 I ··· 0

. . .
0 ··· 0 0 I
0 ··· 0 0 0



 (8)



with z =
[
xT , fT

]T
. Then maximise the volume

of the projection onto x-space of an invariant set
for zk+1 = Ψzk, subject to zk and the implied
uk = −Kxk + eT

1 fk satisfying constraints (5). Let
such an invariant set be denoted Ez, given by

[xT , fT ]

[
P11 P12

PT
12 P22

]

︸ ︷︷ ︸

Q
−1

z

[
x
f

]

≤ 1. (9)

Now, the projection to x-space is given by

Ex = {∃f : xT P11x ≤ 1 − fT P22f − 2xT PT
12f},

or alternatively, f must be chosen such that:

(f − Hx)T P22(f − Hx) ≤

1 − xT [P11 + HT P22H ]x; P22H = −P21.

Remark 2.1. The feasibility region is actually de-
fined by a fixed linear state feedback (Rossiter
et al., 2001). We notice that a feasible point for
f can only exist when xT [P11 + HT P22H ]x ≤ 1,
at which boundary one must have that f = Hx.
That is, on the boundary of feasibility, there is a
fixed dependence of f on x. The control law on the
boundary is therefore given as u = [−K + eT

1 H ]x.
Let KERPC = −K + eT

1 H and define the feasible
invariant ellipsoid where f = 0 as:

Ex0 = {x : xT P11x ≤ 1}. (10)

Remark 2.2. The use of the vector f = Hxk

as “initial condition” in autonomous model (8)
defines a series of ck which guarantee that xk+mc

is within the invariant ellipsoid Ex0. As with
conventional dual mode MPC algorithms, the
additional dynamics f are nil potent, that is they
decay to zero after mc steps.

2.4 GERPC

More recently some authors (Imsland et al., 2004)
have suggested that the ERPC approach could be
improved by augmenting the mode 2 assumption
so that instead of implying nil potent dynamics
to the state feedback, instead one could add
extra dynamics which do not decay to zero in
finite time. This change, that is the addition of
extra dynamics, should give more d.o.f. for either
increasing the volume of the implied terminal
region or for improving predicted performance.

The algorithm is best illustrated as a change to
the implied autonomous model (8) which governs
the behaviour in mode 2,

zk+1 =

[
A − BK BD

F G

]

︸ ︷︷ ︸

Ψ

zk; z =

[
x
f

]

(11)

where one notes the addition of the terms D, F, G
in lieu of the single term IL. It was shown that
one could formulate a BMI optimisation w.r.t. to
the new variables D, F, G so that the projection
of the invariant set for zk+1 = Ψzk onto x-space

was bigger than for ERPC 3 . Recent work in
progress (Cannon et al., 2004) show that given
F = 0 and mc ≥ nx, an equivalent LMI (convex)
optimisation can be formulated. Therein, it is
also pointed out that the implied cost can be
upper bounded by γ if the invariance condition
ΨT Q−1

z Ψ − Q−1
z ≤ 0 is strengthened to

ΨT Q−1
z Ψ−Q−1

z ≤−
1

γ

[

I −KT

0 DT

][

Q 0
0 R

][

I 0
−K D

]

(12)

The γ is an effective tuning parameter for the
performance vs. size of region conflict for GERPC.

Remark 2.3. The GERPC predictions are in fact
single mode in that the pertubation term f con-
verges to zero only asymptotically. Nevertheless,
(given F = 0) the online optimisation would
minimise a weighted norm of f at each sampling
instant and moreover one could still choose f = 0
when x ∈ Ex0 and hence recover optimal perfor-
mance when close to the origin.

2.5 Triple mode MPC

Both ERPC and GERPC start from dual mode
thinking, albeit GERPC arrives at a different so-
lution. One alternative suggestion for overcoming
the conflict between performance and feasibility
is to allow more complex terminal control laws.
So, instead of assuming a dual mode prediction
structure such as in (3), some authors have looked
instead at terminal controls such as:

uk = −Kxk + ck k = 0, . . . , nc−1
uk = −Kk−nc

xk, k = nc, . . . , nc+mc−1
uk = −Kxk k ≥ nc+mc

(13)

where the notable change is the definition of terms
Ki, i = 0, . . . , mc − 1 and hence the addition of a
3rd mode into the predicted control law.

The advantage of using structure (13) is manyfold:

(1) The predictions can still be constructed as
having a linear dependence on the d.o.f. C

(2) The terminal region, with C = 0, may
be significantly enlarged by the addition of
the LTV part in (13). Hence the associated
MCAS could also be much larger.

(3) The predictions still retain the ‘optimal’ feed-
back asymptotically and this helps ensure
that the performance being minimised is still
close to what we would ideally minimise
given a higher nc.

However, the weakness of Triple mode is the same
as its strength, that is the structure implied in
(13). It can be shown that the MAS (that is
the feasible region for C = 0) depends strongly
upon K0 as the first implied control action within
the predictions is always u = −K0x. Hence, the
terminal region is still restricted to those that can
be determined with a fixed state feedback. The
advantage is just that one has essentially built into
the predictions a gradual re-tuning of K as the

3 Obvious as D = 0, F = 0, G = IL is a possible solution.



state moves nearer to the origin. Another major
weakness is the current lack of a systematic tool
for identifying the best sequence of Ki.

3. INSIGHTS AND EXTENSIONS

This section gives some new insights into the
relationship between ERPC and GERPC. These
insights are used to propose a GERPC based
Triple mode algorithm with large feasibility re-
gions which serves as a useful starting point for
future development.

3.1 Feasible regions for ERPC and GERPC

It has been shown previously (Remark 2.1) that
the feasible region of ERPC is equivalent to that
which could be obtained for a fixed state feedback
KERPC . We will show here that in fact a similar
statement can be made for GERPC.

Theorem 3.1. The feasible region of GERPC is
equivalent to that of a fixed state feedback.

Proof: The largest invariant ellipsoid for (11) can
be represented as Ez = {z : zT Q−1

z z ≤ 1}. This
is clearly the same form as (9) and hence the
same analysis as Remark 2.1 must follow, giving
a corresponding feedback KGERPC . ⊔⊓

One might argue that Theorem 3.1 implies that
choosing mc > nx will give no increase in the
feasible region. More rigorous proofs of this fact
are in (Cannon et al., 2004).

3.2 Comparison of ERPC and GERPC

One might wonder that if both ERPC and
GERPC have feasible regions restricted to that
obtainable with a fixed state feedback, surely in
some sense their feasible regions should be equiva-
lent. Why would one algorithm be prefered to the
other? This section attempts to give some insight
into the different properties.

• ERPC is restricted to those strategies, which
in at most mc steps, move the state from its
current position to a point where x ∈ Ex0.
This is evident from the structure of IL.

• GERPC allows dynamics into the part of the
model containing f , and f approaches zero
only asymptotically. As a consequence the
predicted control moves only approach u =
−Kx asymptotically and more importantly,
one does not insist on the state moving
to within Ex0 in only mc steps. It is this
change which allows the feasible region to be
enlarged.

Of course the weakness of GERPC is that f 6= 0
even when the predicted state may be well inside
Ex0 and this could give rise to some suboptimality.
However, if F = 0, then f = 0 is feasible inside
Ex0 and you could obtain the optimal control.

A simplified comparison of GERPC and ERPC
could reduce to the following:

(1) For large enough mc, the feasible regions
would be the same as both reduce to a fixed
state feedback on the outer boundary (for
which an invariance result on Ez is immedi-
ate and therefore convergence can be implied
inside Ez). However, for large mc numeri-
cal problems might occur for ERPC (and
GERPC, but for GERPC there is no advan-
tage (in terms of size of ellipsoid) in choosing
mc > nx (Cannon et al., 2004)).

(2) For small mc, GERPC allows more steps for
x to move into Ex0 and hence should be able
to give larger Ex.

(3) For the same mc, GERPC requires in general
a far more burdensome optimisation than
ERPC. However, if mc ≥ nx and F = 0,
then GERPC reduces to LMI optimisation
with comparable complexity to ERPC.

(4) Performance optimisation can be built di-
rectly into ERPC by minimising fT Wdf sub-
ject to z ∈ Ez. A similar comment apply
to GERPC (Imsland et al., 2004). However,
as ERPC assumes optimal feedback after nc

steps, the optimsation is better posed and
hence better performance is likely. GERPC is
optimising over trajectories which do not de-
fault back to the optimal and this mismatch
will cause some suboptimality.

4. USING ERPC AND GERPC AS A BASE
FOR TRIPLE MODE CONTROL

One major difficulty with the Triple mode algo-
rithm of Section 2.5 is that there is no immediately
obvious way of identifying the Ki used in Mode
2. This is because we are wanting the associated
MAS Si to be such that:

xk ∈ Si and uk = −Kixk ⇒ xk+1 ∈ Si+1. (14)

However, in practice the MAS are non-trivially
defined and moreover Ki should ideally be se-
lected to optimise performance. The search for a
systematic algorithm is ongoing.

4.1 Using ERPC for Triple mode

In the interim, it has been noted (Rossiter et al.,
2001) that in fact ERPC automatically produces
a set of suitable Ki which satisfy (14) where Si are
defined as ellipsoidal invariant sets. That this is so
can be taken immediately from Section 2.3 where
it was shown that on the feasibility boundary,
f = Hx. It is therefore implicit that one can write

f =





c0

...
cmc−1



 =





K0

...
Kmc−1



x = Hx.

The corresponding MAS (terminal constraint set
for 1st mode) would be given directly from (6) as

ST0 = {x : (M0 + N0H)x ≤ d0}

and the predicted cost for predictions (13) would
be quadratic in wT = [CT , xT HT ].



4.2 Triple mode MPC with GERPC

GERPC (Imsland et al., 2004) can be used in
a similar manner as above, but with further en-
hanced feasibility, and with a tuning parameter
for the tradeoff between feasibility and perfor-
mance. As the predictions for GERPC are not the
same as for ERPC, some detail is warranted.

In order to formulate a triple mode algorithm
along similar lines to that indicated in (13) we
need information about the implied control law
structure in the predictions. To obtain this we
require the data Qz (the matrix defining the aug-
mented invariant ellipsoid zT Q−1

z z ≤ 1, with size
to some degree decided by choice of γ), the matri-
ces D, F and G giving the augmented autonomous
system (11) and matrix H corresponding to Qz.

Second mode control moves. As for using
ERPC, the feedback in the second mode is defined
by f = Hxnc

. This is used as initial condition to
define future behaviour through the augmented
system (11). The polytope where the above feed-
back is feasible (which xnc

must be within), is
found by projecting the MAS for the augmented
system (11). For instance, on similar lines to equa-
tion (6) let the MAS for (11) with f = Hx be
given as SH = {x : MHx ≤ dH}. Since

xnc
=(A−BK)ncx+

[
(A−BK)nc−1B, . . . , B

]
C (15)

the triple mode MCAS will be

ScH = {x : ∃C s.t. MHx + NHC ≤ dH}. (16)

Control objective. The future cost is the cost
of the first nc control moves C, added to the cost
of the infinite series of ci’s defined from the f
in the autonomous model of (13). Consequently,
the optimisation objective becomes CT WdC +∑∞

i=nc

(Dfk+i)
T WDfk+i, where the future fi’s

(along with predicted states) are given by (11).
The infinite sum can be calculated by

∞∑

i=nc

fT
k+iD

T WDfk+i = zT
k+nc

Γzk+nc
, (17)

where Γ is given by the Lyapunov equation

ΨT ΓΨ − Γ = − [0 D]
T

W [0 D].

The GERPC triple mode MPC algorithm can be
summed up as follows:

Algorithm 4.1. For given x, minimize J = CT WdC+
xT

nc

[I, HT ]Γ[I, HT ]T xnc
subject to MHx+NHC ≤

dH and (15). Apply first block element of C as
current input.

Stability follows similarly to triple mode MPC
with ERPC (Rossiter et al., 2001).

Remark 4.1. The Mode 3 dynamic is not present
in the predictions as f only tends to zero as-
ymptotically. Thus, with this formulation, we are
not guaranteed that the calculated control is the
same as the unconstrained optimal even within

Ex0. This can be remedied by switching to the
online formulation of GERPC within Ex (corre-
sponding to what is done in Triple mode with
ERPC in (Rossiter et al., 2001)), or switching to
an “ordinary” dual mode MPC algorithm within
the corresponding MCAS.

5. EXAMPLE

This section will illustrate the comparisons in
feasibility and performance between GERPC and
ERPC and Triple mode algorithms based on them
for the system given by

A =

[

1 0.1
0 1

]

, B =

[

0
0.0787

]

(18)

subject to the constraints

|uk| ≤ 1, | [0 1]xk| ≤ 1. (19)

Choose Q = diag(1, 0) and R = 0.1. When
solving the Triple mode problem, we have chosen
horizon nc = 5 in the outer problem, and mc = 5
degrees of freedom (horizon) in the “inner” ERPC
problem. Since mc > 2 does not achieve larger
regions in GERPC, we have used mc = 2 in
GERPC and found the GERPC regions with the
LMI algorithm from (Cannon et al., 2004) for
different γ.

5.1 Elliposidal and polyhedral feasible regions

Fig. 1 shows the feasible regions for ERPC.

(1) Dark shaded region is the MAS for u = −Kx.
(2) Next lighter shading is MAS for Mode 2 of

triple mode.
(3) Next lighter shading is MCAS for Triple

mode.
(4) Lightest shading is MCAS for Algorithm 1

with nc = 10.
(5) White line ellipsoid is for ERPC with nc = 5.

Similar figures can be produced for GERPC, but
with much larger regions. To save space, we in-
stead include a comparison of MCAS for Triple
mode for (a) ERPC, (b) GERPC with γ = 1e2
and (c) GERPC with γ = 1e5. See Fig. 2.

As expected the GERPC regions are much larger
than for ERPC, and the γ parameter effectively
tunes size of MCAS.

5.2 Performance

Simulations of state trajectories from initial con-
dition (-1.75,0.5) can be seen in Fig. 1 (ERPC
triple mode (solid), GERPC γ = 1e2 (dashed) and
GERPC γ = 1e5 (dotted)). These trajectories are
very different. Moreover, Fig. 3 shows that it takes
much longer before the perturbation c becomes
zero for GERPC.

The table below shows the runtime cost for
both cases and again this demonstrates what was
expected, that ERPC significantly outperforms
GERPC for γ = 1e5 when it is feasible. Tuning
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Fig. 1. Feasible regions for ERPC.
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Fig. 2. MCAS for ERPC (smallest), GERPC
w/γ = 1e2 and GERPC w/γ = 1e5 (largest).

Table 1. Runtime costs

ERPC GERPC γ = 1e2 GERPC γ = 1e5

26.1 29.9 44.9

GERPC for better performance (reducing γ) gives
smaller ellipsoids, but the cost gets closer to the
ERPC cost.
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Fig. 3. Input uk and ck for Triple mode MPC
with ERPC and GERPC (γ = 1e2 dashed,
γ = 1e5 dotted), initial condition (-1.75,0.5).

6. FUTURE WORK AND CONCLUSIONS

This paper has given arguments and numerical il-
lustrations to support the conjecture that GERPC
will always give a larger feasiblity region than
ERPC, but when feasible one would expect ERPC

to give better performance. Another useful insight
is that GERPC, just as ERPC, reduces to a fixed
state feedback on the outer feasibility boundary;
this observation has not been used to advantage
in either algorithm and a systematic means of
using this knowledge remains an open question.
Also, based on this previous observation, it has
been shown that, just as for ERPC, GERPC can
be used as a base for a Triple mode algorithm
and hence to give yet further feasibility improve-
ments and the potential to recover some perfor-
mance. The same comparative behaviour between
GERPC and ERPC variants is expected.

A main purpose for discussing the insights of this
paper is to consider a good direction for future
developments. It is clear that the Triple mode
algorithm based on ERPC or GERPC is still to
some extent flawed for two reasons:

1) The mode 2 part of the prediction is based on a
law chosen to maximise feasibility, not to optimise
performance.

There needs to be some systematic compromise
between the feasibility and performance and per-
haps one such that is time (or state) varying so
that one can change the underlying assumption as
the state moves closer to the origin. A step in this
direction is the use of an upper bound on GERPC
performance (Cannon et al., 2004), as shown in
the example.

2) The Triple mode algorithm is defined with poly-
hedral sets and as such does not lend itself easily
to the robust case which ERPC and GERPC
handle well.

We intend to look at how to bridge this gap and
hope the recent work of (Pluymers et al., 2004)
will be a good start point.
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