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Abstract: This work concerns the optimal regulation of single-input-single-output
nonminimum-phase nonlinear processes of relative order one. The problem of calculation
of an ISE-optimal, statically equivalent, minimum-phase output for nonminimum-phase
compensation is formulated using Hamilton-Jacobi theory and the normal form
representation of the nonlinear system. A Newton-Kantorovich iteration is developed for
the solution of the pertinent Hamilton-Jacobi equations, which involves solving a Zubov
equation at each step of the iteration. The method is applied to the problem of controlling
a nonisothermal CSTR with Van de Vusse kinetics, which exhibits nonminimum-phase
behavior.  Copyright © 2005 IFAC
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1. INTRODUCTION

Controlling processes with unstable zero dynamics is
a significant challenge.  For linear systems, the
system is typically factored into minimum-phase and
nonminimum-phase parts, with the minimum-phase
part inverted for controller design.  For nonlinear
systems, the decomposition into minimum-phase and
nonminimum-phase parts is an extremely difficult
problem.  In the special case of second-order
systems, Kravaris and Daoutidis (1990) solved the
decomposition problem and calculated ISE-optimal
control laws.  Ball and van der Schaft (1996)
proposed a mathematical formulation for the
decomposition problem for higher-order nonlinear
systems.  Alternative approaches were also
developed by Doyle et al. (1992; 1996), which
include approximate stable/anti-stable factorization
of the zero dynamics, an inner-outer based
approximation, and a multiple-input approach.  All
of these aforementioned methods are applicable only
to limited classes of nonlinear systems.

Wright and Kravaris (1992) and Kravaris et al.
(1994) developed a nonminimum-phase
compensation structure for nonlinear systems, which
is based upon a synthetic output that is statically
equivalent to the original output and makes the

system minimum-phase. This methodology bypassed
the difficulty of decomposition and reduced the
problem to the construction of an appropriate
synthetic output.

One approach to the problem of construction of
synthetic minimum-phase outputs is by formulating it
as a zeros assignment problem. In the work of
d’Andrea and Praly (1988), a linear synthetic output
was constructed for prescribed zeros for the
linearization of the system. In Kravaris et al. (1998)
and Niemiec and Kravaris (2003), the synthetic
output was constructed to be statically equivalent to
the original process output, in addition to having
prescribed zeros in the linearization of the system.
All these zeros-assignment approaches are of general
applicability, leading to controllers with reasonable
performance, but they don’t provide an answer to the
question of optimal selection of the synthetic output.

The present work will study the problem of
construction of an ISE-optimal minimum-phase
output for single-input-single-output nonlinear
systems of relative order one, using a Hamilton-
Jacobi formulation.



2. PRELIMINARIES

Consider a single-input-single-output nonlinear
process described by a state-space model of the form:

( ) ( )
( )

= +
=

x f x g x u
y h x

                      (1)

where x  denotes the vector of state variables, u
denotes the manipulated input, and y  denotes the
controlled output. In order to simplify the
development of the ideas, assume that the relative
order of the system (1) is equal to 1, i.e.

 ( ) ( ) 0∂
≠

∂
h x g x
x

.

For a system of the form (1) of relative order 1, a
simple choice of feedback is the input/output
linearizing state feedback law:
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whereτ is a positive adjustable parameter. Under this
state feedback, the input / output behaviour of the
closed-loop system is linear, with time constant τ :

     dy y v
dt

+ =τ         (3)

As long as the system (1) is hyperbolically
minimum-phase around the steady state of interest,
(2) induces local asymptotic stability in closed loop.

When the system to be controlled is nonminimum-
phase, the foregoing simple controller design method
is not applicable. However, it can potentially be
modified to “compensate” for the nonminimum-
phase nature of the system. Generally speaking, the
term “nonminimum-phase compensation” refers to a
control methodology by which the control problem
for a nonminimum-phase system reduces to
controller design of an auxiliary minimum-phase
system. In a state-space design context, this involves
using an auxiliary output (also called “synthetic
output”)

       ( )y h x′ ′=         (4)
such that

(i) The system:

( ) ( )
( )
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y h x

= +
′ ′=

        (5)

is locally hyperbolically minimum-phase.

(ii) The outputs ( )=y h x and ( )′ ′=y h x  are statically
equivalent in the sense that they assume the same
values when the system (1) is at steady state.

If such an output map can be found, controlling the
output y  to a constant set point can be accomplished
by controlling the auxiliary output y′  to the identical
set point. In this case, the input/output linearizing

state feedback may be based on the minimum-phase
auxiliary output:
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inducing linear input/output behaviour with time
constant τ , with respect to the auxiliary output ′y .

The present work will study the problem of selection
of the synthetic output ( )′ ′=y h x  in an optimal
fashion, in terms of the ISE criterion.

3. PROBLEM STATEMENT

Consider a nonlinear system of the form (1) of
relative order 1. Without loss of generality, the
system will be considered in Byrnes–Isidori normal
form (Byrnes and Isidori, 1985; Isidori, 1989):

    0 ( , )
( , ) ( , )y

F y
y F y G y u

=

= +

ζ ζ

ζ ζ
        (7)

where u ∈  is the manipulated input, y ∈  is the

output, n

y
 

∈ 
 

ζ
 is the state vector,

1 1
0 : n nF − −× → ,  1: n

yF − × →  and
1: nG − × →  are real analytic functions.

Denote by ∈υ  the set point value at which the
output y  must be regulated and 1n

s
−∈ζ  the

corresponding steady state for ζ  at which the system
must operate. (Hence, sζ  and υ  are related via

0 ( , ) 0sF =ζ υ )

The zero dynamics of the system at y = υ  is

   0 ( , )F=ζ ζ υ         (8)
and its local stability characteristics determine the
local minimum- or nonminimum–phase behaviour of
the system.

The following standing assumptions will be made
concerning the system (7):

i) 0 ( , )s
F∂

∂
ζ υ

ζ
 does not have any eigenvalues on the

imaginary axis

ii) 0 0( , ), ( , )s s
F F

y
 ∂ ∂
 ∂ ∂ 

ζ υ ζ υ
ζ

 form a controllable pair

iii) ( , ) 0G y ≠ζ  for all ζ  and y .

With regard to regulation of the output y  to the set
point value of υ , the Integral of the Square of the
Error (ISE) is a meaningful performance measure:

     [ ]2

0

1 ( )
2

ISE y t dt
∞

= −∫ υ       (9)



Thus, the optimal control problem under
consideration is the minimization of the performance
index (9) under the dynamics (7) and subject to the
constraint of closed-loop stability. This is a singular
optimal control problem, since, as can be easily
verified, its Hamiltonian function is linear in the
input u   (Bryson and Ho, 1975).

Because of the structure of the Byrnes–Isidori
normal form, the solution of the foregoing singular
optimal control problem can be accomplished by
solving the following regular optimal control
problem:
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                        ( , )
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The solution to the above optimal control problem,
when expressed in the form of state feedback law

   ( ; )y y∗= ζ υ       (11)
represents exactly the singular surface for the
original singular optimal control problem. Note that,
by construction, the function y∗  will be such that the

dynamics ( )0 , ( ; )F y∗=ζ ζ ζ υ  is stable and

( ; )sy∗ =ζ υ υ .

When (11) is solved with respect to υ ,

   ( , )h y′=υ ζ       (12)
this defines an auxiliary output map

              ( , )y h y′ ′= ζ       (13)
which has the following properties:

i) ( , )sh ζ υ υ′ = , which implies that y′  is statically
equivalent to y .
ii) the zero dynamics of system (7) with output (13)
is ( )*

0 , ( ; )F y=ζ ζ ζ υ  which is stable, therefore y′

is a minimum-phase output.
iii) Since the ISE–optimal trajectories for ( )tζ  and

( )y t  will satisfy (11) for every t , this means they
will also satisfy ( )( ), ( )h t y t′ =ζ υ  for every t , i.e.
will correspond to perfect control of y′  to υ .

Consequently, ( , )y h y′ ′= ζ  is the ISE–optimal
choice of statically equivalent minimum–phase
output in the sense that its perfect control to set point
corresponds to ISE–optimality in the original output.

In the linear case, where

       0 0( , )F y A y= +ζ ζ γ       (14)
where 0A  and γ  are ( 1) ( 1)n n− × −  and ( 1) 1n − ×

matrices respectively, the solution to the above
optimal control problem is standard  (Kailath, 1980):

           ( )1
0( ; )y P A∗ Τ −= − +ζ υ υ γ ζ γυ       (15)

where P  is the solution of the quadratic matrix
equation:

     0 0 0A P PA P PΤ Τ+ − =γγ       (16)

that makes ( )0A PΤ− γγ  Hurwitz.

Consequently, the singular surface for the original
singular optimal control problem is:
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The function
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is the ISE–optimal choice for auxiliary output for
nonminimum–phase compensation.

4. HAMILTON–JACOBI FORMULATION OF
THE OPTIMAL CONTROL PROBLEM

Consider the optimal control problem (10). The
Hamiltonian function associated with this problem is
(Bryson and Ho, 1975):

      ( )2
0

1( , , ) ( , )
2

H y y F yΤ= − +ζ λ υ λ ζ      (20)

where 1n−∈λ  is the vector of  multipliers.
Denoting

            ( , ) arg min ( , , )
y

H y=κ ζ λ ζ λ       (21)

the Hamilton–Jacobi equation is (Lee and Markus,
1967):
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and the optimal control can be derived from the
solution to the above equation, as:

                   , ( )Vy∗  ∂
=  ∂ 

κ ζ ζ
ζ

      (23)

Equivalently, since ( , , )H y
y

∂
∂

ζ λ  must vanish at

arg min ( , , )
y

H yζ λ , the functions ( )V ζ  and ( )y∗ ζ

must satisfy the coupled equations:
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The above equations must be solved with initial
conditions:

             *( ) 0 , ( )s sV y= =ζ ζ υ       (25)
Under the assumptions stated in the previous section,
there exists a unique analytic solution in a
neighbourhood of s=ζ ζ , such that the dynamics

( ), ( )F y∗=ζ ζ ζ  is locally asymptotically stable

(Lukes, 1969). The solution for ( )V ζ  is locally
positive semidefinite. Given the local analyticity
property of the solution, it is possible to seek for the
solution in the form of a Taylor series expansion and,
recursively try to determine the Taylor coefficients
up to a certain truncation order.

When this approach is applied to the leading terms of
the Taylor series expansion (quadratic terms in ( )V ζ

and linear terms in ( )y∗ ζ ), one obtains the result for
the linear–quadratic approximation of the problem:

               ( ) ( ) 31( ) ( )
2
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Τ

= − − +s sV P O         (25)

  ( ) ( )* 20( ) , ( )ζ υ ζ υ ζ ζ ζ
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y P O
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where P  is the solution of the quadratic matrix
equation:
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that makes
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P
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Τ
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ζ υ ζ υ ζ υ
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The procedure can, in principle, continue, to
determine the coefficients of the higher-order terms
of the Taylor series expansion of the solution, even
though the resulting algebraic equations become
extremely complex. In the following section, a
Newton-type iteration will be developed to enable
the calculation of higher-order terms, using symbolic
computing.

5. A NEWTON–KANTOROVICH ITERATION
FOR THE SOLUTION OF THE

HAMILTON–JACOBI EQUATIONS

Given a general nonlinear operator equation
( ) 0xℵ = , the Newton–Kantorovich iteration

(Kantorovich and Akilov, 1964) involves solving the
linear operator equation

          ( ) ( ) ( )1+′ℵ ⋅ − = −ℵN N N Nx x x x       (28)

at each step of the iteration, where ( )x x′ℵ ⋅δ

represents the Fréchet differential of the operator ℵ .

For the particular nonlinear operator of the
Hamilton–Jacobi equations,
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the Fréchet differential is:
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Given the above expression for the Fréchet
differential, the Newton–Kantorovich iteration (28),
after some algebraic manipulations, finally takes the
form:
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where
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Notice that (31) is a linear partial differential
equation with unknown 1( )NV + ζ . In particular, it is a
Zubov equation, for which a recursive series solution
algorithm is available (Kazantzis, et al., 2005). Once
the solution of (31) is computed, (32) determines
directly 1( )Ny∗

+ ζ .

The Newton–Kantorovich iteration can be initialized
with 1( )V ζ  quadratic and 1 ( )y∗ ζ  linear, obtained
from the linear–quadratic approximation of the
problem, given in the previous section.   



6. EXAMPLE

Consider a nonisothermal continuous stirred tank
reactor (CSTR) of constant volume V, in which the
following series/parallel reaction takes place:

1 2

32

k k

k

A B C

A D

→ →

→
The mass and energy balances that describe the
dynamics of the reactor are:

( )

( ) ( ) ( )

( )

2 0
1 3

1 2

2
1 1 2 2 3 3

0     

= − − + −

= − −

− ∆ − ∆ − ∆
= +

+ + −

=

A
A A A A

B
A B B

A B A

mix P

H

mix P

B

dC Fk C k C C C
dt V

dC Fk C k C C
dt V

H k C H k C H k CdT
dt C

Q FT T
C V

y C

ρ

ρ

   (34)

where AC , BC  are the molar concentrations of A  and

B  respectively,T  the temperature of the reactor, F
V

the dilution rate, mixρ  the density of the mixture, PC
the heat capacity, iH∆  the heats of the reaction and

HQ  the constant rate of the heat removed per unit
volume. The rate coefficients are given by the
Arrhenius equation 0( ) exp( / )i i ik T k E RT= − ,

1,2,3i = . All the constants and parameters are given
in Table 1 (Kravaris, et al., 1998).

Table 1. Constants and parameters of the system

12 1
10 1.287 10k h−= ⋅ 12 1

20 1.287 10k h−= ⋅ 9
30 9.043 10 /( )k L mol h= ⋅ ⋅

1 / 9758.3=E R K 2 / 9758.3=E R K 3 / 8560=E R K

1 4.2 /H kJ mol∆ = 2 11 /H kJ mol∆ = − 3 41.85 /H kJ mol∆ = −

0.9342 /mix kg Lρ = 3.01 /( )PC kJ kg K= ⋅ 451.51 /( )HQ kJ L h= − ⋅
0 5 /AC gmol L= 0 403.15T K=

The control objective is the optimal regulation of the
output By C=  at set point by manipulating the

dilution rate F
V

. In particular, the controller must

bring the system to the final steady state of
1.0774 /=AsC mol l , 0.8181 /=BsC mol l  and 403.15=sT K,

which corresponds to ( ) 112.5418 −=
s

F V h .

The coordinate transformation

           
0 0

1 2, ,ζ ζ
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= = =A A
B

B B

C C T T y C
C C

    (35)

transforms (34) to Byrnes-Isidori normal form:
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C y C y

dy Fk C y k y y
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ζ ζ
ζ ζ

ρ ρ

ζ

ρ ρ
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 (36)

where { }0
0 2exp / ( )= − −i i ik k E R T yζ , 1,2,3i = .

Coordinate transformation (35) maps the desirable
final steady state to 1 4.7948ζ =s , 2 0ζ =s  and

0.8181 /sy mol l= . A straightforward calculation of
the eigenvalues of the Jacobian of the zero dynamics
shows that the system is locally nonminimum –
phase at the desirable final steady state.

Using deviation variables 1 1 1ζ ζ ζ= − s , 2 2 2ζ ζ ζ= − s

and = − sy y y , the problem becomes the one of
regulating the given nonminimum phase system to
the origin.

The pertinent Hamilton - Jacobi equations were
solved using the symbolic program MAPLE,
applying the iterative solution method described in
the previous section. The solution up to 5th order was
found to be:

-3 2 -6
1 2 1 1 2

-4 3 -5 2
1 1 2

-7 2 -11 3
1 2 2

-4 4 -5 3
1 1 2

( , ) 0.1156 10 0.2 10

             0.644601 10 0.545595 10

             0.112623 10 0.749841 10

             0.207583 10 0.459909 10
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+ − +
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ζ ζ ζ

ζ ζ ζ
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1 2 1 2
-12 4

2
-5 5 -5 4

1 1 2
-6 3 2 -8 2 3

1 2 1 2

 0.138649 10 0.365272 10

             0.791093 10

             0.554933 10 0.196181 10

             0.161327 10 0.253904 10

             0.963585 

+ + −
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− + −

− + +

+

ζ ζ ζ ζ

ζ

ζ ζ ζ

ζ ζ ζ ζ
-11 4 -13 5

1 2 210 0.593702 10−ζ ζ ζ
 

(37)
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1 2 1 2

-2 2 -3
1 1 2

-5 2
2

3 -2 2
1 1 2

( , ) 0.241444 0.208779 10

                0.668295 10 0.202038 10

                0.150569 10

                0.016334 0.211563 10

                0.126407 10

∗ = − − −

− + −

− −

− − −

−

y ζ ζ ζ ζ

ζ ζ ζ

ζ

ζ ζ ζ
-4 2 -7 3

1 2 2
4 -3 3

1 1 2
-5 2 2 -6 3

1 2 1 2
-9 4

2

0.321561 10

                0.014529 0.870863 10

                0.517792 10 0.278626 10

                0.581388 10

− −

− − −

− − −

−

ζ ζ ζ

ζ ζ ζ

ζ ζ ζ ζ

ζ

    (38)

Figure 1 depicts the solution 1 2( , )V ζ ζ  for different
truncation orders N=2,3,4,5. In Figure 1, the N=2
approximation is at the top, N=3 at the bottom, and
N=4,5 essentially coincide in the middle. This
indicates that convergence of the Taylor series is
achieved for N>3 within the ranges of 1ζ and 2ζ



Fig. 1. Solution for 1 2( , )V ζ ζ  for different truncation
orders N=2, 3, 4, 5.

shown. A similar diagram was constructed for

1 2( , )y ζ ζ∗ (not shown), that indicated numerical
convergence for N>2 within the same ranges.

For nonminimum-phase compensation, the synthetic
output

                           1 2( , )y y y ζ ζ∗′ = −                     (39)
is used, which is a statically equivalent minimum–
phase output and, moreover, perfect control of y′  to
0 corresponds to ISE–optimality in y . The state
feedback law (6), with the synthetic output map (39)
is then applied to regulate y′  to 0.

Figures 2 and 3 show the resulting closed-loop
responses of output By C=   and synthetic output y′ ,
for a step change in the set-point from 0.85 to 0.8181
and for different time constants, τ=10-2, 10-3, 10-4 and
10-5. The calculations were made for 5-th order
approximation. As the closed-loop time constant τ
tends to zero, the resulting closed-loop responses
converge to the ISE-optimal responses.

Fig. 2. Closed-loop responses of output = By C  for a
step change in the set point from 0.85 to 0.8181, for
N=5 (τ=10-2, τ=10-3, τ=10-4, τ=10-5)

Fig. 3. Closed-loop responses of synthetic output y′
for a step change in the set point from 0.85 to 0.8181,
for N=5 (τ=10-2, τ=10-3, τ=10-4, τ=10-5)
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