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Abstract: A methodology is proposed to diagnose faults from a detection system
that allows to express uncertainty with intervals in parameters and measurements.
A fault is detected by comparing current measurements with computed external
and internal approximations of behavior. The results are applied to diagnose faults.
A qualitative data set is obtained in order to create fault rules. A fault library is
built from these rules to make fault diagnosis. Diagnosis is given by a set of the
most possible faults with similar behavior. Copyright c©2005 IFAC
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1. INTRODUCTION

A fault is something that changes the behavior of
a technological system such that the system does
no longer satisfy its purpose (Blanke et al., 2003).
In order to avoid production deteriorations or
damage to machines and humans, faults have to
be found as quickly as possible and decisions that
stop the propagations of their effects have to be
made.

To guarantee safety and correct operation of sys-
tems, the improvements of methods used in su-
pervision, monitoring and control are necessary.
Fault detection and diagnosis are tasks included
in these methods. Detection consists on finding an
abnormal behavior in the process and diagnosis
consists on determinating the type, size as well as
location of the fault.

One approach to diagnosis is the called Model-
based diagnosis (MBD). MBD systems reason
starting from a model. The model represents the
behavior of the system to be diagnosed. If the
behavior of the observed situation is different from

the estimation carried out by the model to the
same situation, the system concludes that there is
a fault. A later analysis about differences tries to
identify which component is the cause of the fault
(Gertler, 1998).

Mathematical models can be used to calculate the
reference behavior in order to be compared with
available system’s measurements. However, an ac-
curate and complete model of a physical system
is almost never available. Usually the parameters
of a system may vary with time in an uncertain
manner, and the characteristics of disturbances
and noise are unknown so that they cannot be
modelled.

An alternative approach is to represent uncer-
tainty in models with intervals where structure
of the models is known but parameters and sen-
sors’ noise may be given as imprecise numerical
intervals. The present work starts from detection
based on interval models. SQualTrack (Armengol
et al., 2003) is a robust fault detection tool that
monitors the behavior of a real process in order to



detect internal faults which are present in the pro-
cess. Simulation is based on modal interval arith-
metic, which produces overbounded and under-
bounded envelopes for the supervised system. It
uses error-bounded estimations and time windows
to deal with the computation problem, reducing
the computational effort and improving the fault
detection results. The present work describes a
methodology to complement the fault detection
system in order to develop a support system for
making decisions in fault diagnosis.

The paper is organized in 5 sections. This sec-
tion introduces fault detection and diagnosis tasks
and briefly explains the problem of uncertainty.
Section 2 describes the dynamical models and
the detection system. In Section 3 the proposed
methodology to make diagnosis from detection
with interval models is described. Experimental
results of the proposed methodology with an ex-
ample of a DC motor are shown in Section 4 and
finally conclusions and future work are presented
in Section 5.

2. INTERVAL DYNAMIC MODELS

As it was said in the introduction one way to
detect faults is by comparing the real system
behavior with the predicted one obtained from
a model. Continuous-time systems are usually
described by differential equations. Usually the
input, state and output variables are sampled
time-signals defined over a time variable k, which
belongs to a discrete set. All signals are assumed
to be sampled synchronously at a fixed sampling
period. It is for this reason that discrete models
are used. Then a fault is detected when the
predicted behavior from the model is different
from the corresponding measurement:

y(t) 6= ŷ(t) (1)

Most of the times this equation will be true
and consequently the constant detection of faults
happens. One reason is because of in industrial
monitoring of processes, the uncertainty is often
present due to sensors and signal noises, imprecise
knowledge about model parameters or because the
parameters may vary with time. With Intervals
it is possible to have uncertain and less precise
models but more accurate.

These models are used to determine, for the
measured sequence U , the sequence of the model
output Ŷ (t). The consistency of the system with
the model can be checked at every time t by
determining the difference:

r(t) = y(t)− ŷ(t) (2)

which is called residual. When there is no fault
the value is close to zero.

The reference behavior for fault detection in the
present work is obtained by simulation of interval
models which consider uncertainty in model pa-
rameters and sensor measurements. One example
of this kind of models is equation 3. The equation
is a n-th order SISO (Single Input, Single Output)
system represented by a difference equation where
u are inputs, T the sampling time, and a or b are
parameters of the system, in this case they are
intervals:

yt =
m+1∑

i=1

aiyt−iT +
p+1∑

j=1

bjut−jT (3)

Equation 3 is the starting point of our approach.
It defines an imprecise model of the supervised
system with uncertain parameters that are inde-
pendent. The simulation of a real-valued model
produces a trajectory for each output variable
which is a curve representing the evolution of
the variable of the system across time: yr(t). In
the case of an interval model, there is a set of
models indeed where a set of curves (a band) rep-
resents the evolution of each variable (Armengol
et al., 2003). The limits of the band are:

Yr(t) = [min(yr(t)), max(yr(t))] (4)

2.1 Modal interval simulator

To compute the band limits is necessary to com-
pute the range of a function in a parameter
space at each simulation step, which is a task re-
lated to global optimization and usually needs an
important computation effort. With SQualTrack
(Armengol, 1999; Armengol et al., 2003) similar
results can be obtained at a lower cost by calculat-
ing external estimations Yrex(t) to the range of the
function at each iteration. After infinite iterations
it would calculate the exact range, but it stops
when the estimation is sufficiently close to detect
the fault, thus saving much computational effort
when a fault is detected. However if there is not a
fault and the simulator never stops this drawback
can be overcome by using an internal estimation
Yrin(t). If the measurement is inside this envelope
the fault, if it exists, will never be detected so the
algorithm must stop.

The simultaneous use of internal and external
estimations obtain the same fault detection results
than Yr(t) but with a much lower computation
effort. Both estimations form an error-bounded
estimation because although Yr(t) is not known,
it is known that Yrin(t) ⊆ Yr(t) ⊆ Yrex(t).

Three zones are defined by error bounded estima-
tions depicted in figure 1. The simulator guaran-
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Fig. 1. Three zones defined by error-bounded
envelopes

tees that a fault exits when the measurement is
out of the overbounded envelope (outer zone) by
eliminating in this way false alarms. However if
the measurement is in the intermediate zone there
can be a fault and not be detected (missed alarm).
This is due to that overbounded envelope includes
values that do not belong to the values space of the
system represented by interval models. Another
reason is the dynamics of the system so more
time may be needed for detecting a fault. If the
measurement is in the inner zone, the algorithm
stops because it is not possible to detect faults.

To computed the error bounded-estimations in
a time instant, the simulator uses the values of
the interval measurement from the past instant t-
window. In case of multi-incidences in the function
and using algorithms based on Interval Arith-
metic, overbounded results are obtained. How-
ever these multi-incidences are taken into account
by using an extension of Interval Analysis called
Modal Interval Analysis (SIGLA/X, 1999). In this
way spurious solutions are reduced.

3. METHODOLOGY

The fault detection system uses the proposed
methodology in order to diagnose faults. With
SQualTrack the symptoms of faults caused by
changes in process parameters are obtained. The
models proposed to be introduced in SQualTrack
are based on structural analysis that considers
the links between variables and parameters in the
model.

In the structural analysis (Blanke et al., 2003) the
model of the system is seen as a set of constraints
that are applied to a set of variables. There
is a subset formed by known variables (sensors
and control variables). The set of constraints is
given by component models of the system which
form the elementary analytical relations (EAR)
between the values of variables from physical laws.

Getting data from
detection with SQualTrack

Tendency analysis
(measurement)

Qualitative vector
(measurement & envelopes)

Diagnosis

Application of fault rules 

Qualitative vector
(predicted)

Fig. 2. Steps for Diagnosis

A constraint that applies only to known variables
and parameters constitutes an analytical redun-
dancy relation (ARR). The structure of the model
is a matrix where a number 1 represents that the
constraint applies to the variable and 0 otherwise.
In this way the fault signature matrix is built. The
constraints can be evaluated from only observed
variables and they can be used in fault detection
and diagnosis (Cordier et al., 2000).

In the present approach a graphical interface and
the functions to analyze the symptoms were de-
veloped on MATLAB. Two stages are considered;
off-line to implement and configure the system
and fault diagnosis after detection. On one hand
off-line tasks are the generation of ARRs, the
simulation and off-line detection of faults in order
to have representative data from different faults
and the creation of rules by including qualitative
knowledge from fault detection. The rules will be
used to build automatically a fault library accord-
ing to the fault scenery. On the other hand the
diagnosis tasks consists on six steps depicted in
figure 2 and described in the following subsections.
Some of these tasks are similar to those carried out
in the off-line stage but with different data.

3.1 Getting data from detection

First step consist on getting the data from de-
tection results obtained by SQualTrack. Data are
included in a file with 9 columns in the following
order: 1) step/time 2) Inferior measurement 3) Su-
perior measurement 4) Inferior underbounded 5)
Superior underbounded 6) Inferior overbounded
7) Superior overbounded 8) Fault/no fault 9)
Window where fault was detected.

3.2 Tendency analysis

This step consists on making an analysis of
monotony to the measurement data. The increas-



Fig. 3. Monotony analysis from measurement.
f(x) is the measurement, x is the step time
and I is the interval of monotony.

ing behavior corresponds to the up-motion while
the decreasing behavior corresponds to the down-
motion. These two function properties are closely
related to the behavior from the derivative of the
function (when it is differentiable). In figure 3, the
behaviors can be described in the following way:
vertical axis f(x) is increasing on the time interval
I if for any x1, x2 ∈ I

f(x1)− f(x2)
x1 − x2

> 0, (5)

and f(x) is decreasing on I if for any x1, x2 ∈ I

f(x1)− f(x2)
x1 − x2

< 0 (6)

The analysis is based on measurement values from
the sampling time. The task consists on putting
labels to the measurement values during time
intervals. On one hand if the value of the mea-
surement in next time step is bigger than present
value, the label is ”Increasing”. On the other hand
if the value is smaller, the label is ”Decreasing”.
All data vector is analyzed in this way and the re-
sult is a qualitative vector that includes a behavior
description of the current measurement. There is
a third label called ”Constant” where the value
remains constant. Figure 3 shows the intervals
of monotony from a signal. Vertical axis is the
measurement to be compared with the simulated
one, horizontal axis refers to the step time. If the
signal is increasing it is indicated in the graph by
the maximum value. If the signal is decreasing it
is indicated in the graph by the minimum value.

3.3 Qualitative vector from detection state

On this step a qualitative vector describes the re-
lation of the current measurement with regard to
the envelopes simulated by SQualTrack. The mea-
surements on each time step are labelled. If the
current measurements values are bigger than the
superior overbounded, the label is ”Plus”. On the

other hand if the measurements are smaller than
the inferior overbounded the label is ”Minus”. In
case of no fault has been detected (according to
the properties of detection module) the label is
”Uncertain Plus” if at least one limit from the
measurement envelope is bigger than the superior
overbounded and the label will be ”Uncertain
Minus” in any other case. They are uncertain since
it is unknown if a fault exists or not.

3.4 Fault rules and fault library

As a suitable tool for treatment of heuristic knowl-
edge (especially in the diagnostic domain), spe-
cific rules are applied in order to set up logical
interactions between observed symptoms (effects)
and faults (causes) to structure the knowledge in a
problem-adapted manner. An example of a single
rule is described as

If < condition > THEN < conclusion >

where condition part contains facts (symptoms)
with AND and OR connectives and the conclusion
part represents an event as a logical cause of these
facts. On the present work a vector is generated
by using rules of faulty behaviors. Each one of
faulty behaviors to be detected are described by
means of rules. An example of one simple rule is
the following:

IF measurement is ”Growing” THEN ”Plus”
(Measurements are bigger than superior

overbounded)

Tendency information and qualitative vectors de-
scribing faulty behaviors are used as training set
to create a set of rules. The set of rules, used
for classification and training, includes all kind
of faults to be detected. The data are used with
an algorithm called C4.5 introduced by Quinlan
(http://www.cse.unsw.edu.au/∼quinlan/) for in-
ducing Classification Models, also called Decision
Trees, from data. A set of records is given. Each
record has the same structure, consisting of a
number of attribute/value pairs. One of these
attributes represents the category of the record.

The aim is to determine a decision tree that
will predict correctly the value of a non-category
attribute. Usually the category attribute takes
only the values between true or false. In this case
the values depend on the number of differentiable
faults.

3.5 Fault diagnosis

Diagnosis of the detected fault is formed by the
steps depicted in figure 2. Data from detection
are saved in a file. A monotony analysis is carried
out to the current measurement (vector including



”Growing” or ”Falling” labels). After this a quali-
tative vector is obtained (”Plus” or ”Minus” labels
depending on the behavior from the measurement
with regard to the computed envelopes). At the
same time another qualitative vector is obtained
which predicts the behaviors of different faults by
using the fault rules generated by the classification
algorithm C4.5. Finally a comparison among qual-
itative current-vector and qualitative predicted
vectors is made in order to find the most similar
fault from the library. The idea of similarity is
made by the definition of Hamming distance. The
Hamming distance between these two vectors is
the number of labels that disagree. The diagnosis
is given by a list of the most possible faults in
order of possibility being the most possible the
one with the smaller distance.

4. EXPERIMENTAL RESULTS

The performance of the diagnosis system has been
evaluated by using simulated supervised systems
such as electrical circuits, linear systems and in
this case the example of a DC motor is presented.

The elementary models of components are ob-
tained from physical laws. Equations 7 and 8 cor-
respond to the electrical subsystem and equations
9 and 10 to the mechanical subsystem:

L
dia
dt

+ Ria(t) + eb(t) = ea(t) (7)

eb(t) = K1ω(t) (8)

J
dω

dt
+ Bω(t) = T (t) (9)

T (t) = K2ia(t) (10)

Where imprecise parameters are: Resistance (R),
inductance (L), rotor inertia (J ) and viscose fric-
tion coefficient (B). Also back-EMF (eb), rotor
torque (T ), torque constant (K2) and for an ideal
DC motor it equals the back-EMF constant (K1)
determine the system.

Table 1. Fault signature

J B R L

ARR1 1 1 0 0
ARR2 0 0 1 1

The fault signature matrix (Table 1) is obtained
from structural analysis. For this reason it only
includes known variables: Current (ia), voltage
supply (ea) and angular speed (w). The fault
signature indicates that, analytical redundancy
relation number one just involves to the compo-
nents J and B corresponding to the mechanical
subsystem (equation 11) and equation 12 corre-
sponds to the electrical subsystem. On this case
is naturally separated but in more complex cases

the ARRs can discriminate or put at the end of
the list components which are not involved in an
ARR where a fault has been detected.

w(t + 1) = w(t)(1− B∆t

J
) +

∆t

J
(K2ia(t)) (11)

i(t + 1) = i(t)(1− R∆t

L
) +

∆t

L
(ea(t)−K1w(t))(12)

Several faults were introduce to diagnose in a
DC motor for example increasing the resistance
in the circuit simulating and increased stator
temperature. Another case is to increase friction,
this could be due to missing lubrication and
beginning corrosion (see Table 2).

Table 2. Faults in the system

Fault Kind of fault Name Value

1 normal nofault nominal
2 J > normal J-bigger J = 0.1
3 J < normal J-smaller J = 0.005
4 B > normal B-bigger B = 0.15
5 B < normal B-smaller B = 0.05
6 L > normal L-bigger L = 0.7
7 L < normal L-smaller L = 0.1
8 R > normal R-bigger R = 1.5
9 R < normal R-smaller R = 0.5

Figure 4 shows the results of the fault detection
software SQualTrack, this information is saved in
a file to be analyzed by the diagnosis stage. Data
are obtained from a faulty behavior corresponding
to the fault 2 where the parameter J is bigger
than the considered as normal. The first graph
(starting from the upper) shows the envelopes for
the output variable and the corresponding mea-
surements. The second graph shows red bars with
value of 1 when a fault is detected. Third graph
indicates the window length that has been used
at the corresponding time step. Finally, the lower
graph simply shows the current measurement.

Diagnosis system starts to deal with data apply-
ing the steps explained and shown in figure 2.
The diagnosis support system gives information
consisting on Hamming distances from similar-
ity between the current behavior and the faulty
predicted behaviors. The smaller distance is the
most similar fault. Table 3 present the diagnosis
corresponding to the results from a fault where J
is bigger than the normal value. Column 1 indi-
cates the Hamming distance of 200 samples which
determines the order of possibility depending on
the similarity and column 2 indicates the kind of
fault.

Table 3. Diagnosis

Similarity distance Kind of fault

18 Jbigger
78 Bbigger
102 Bsmaller
180 Jsmaller
199 nofault



Fig. 4. SQualTrack fault detection. Case 2: J-bigger. Upper graph shows envelopes of measurement and
simulation. Following graph shows bars with 1 when a fault is detected. Next graph indicates last
window length applied at the specific time. Lower graph shows the analyzed measurement.

5. CONCLUSIONS AND FUTURE WORK

A mathematical interval model from a dynami-
cal process has been simulated with SQualTrack
which takes a decision about the presence of a
fault. The elimination of false alarms makes it
a useful tool for fault diagnosis. The structural
analysis carries out the task of isolation through
specific equations. Heuristic knowledge from these
symptoms is used by making an automatic and
adaptive fault library.

A methodology of fault diagnosis based on detec-
tion with interval models and based on a fault
library created with an algorithm of rules (C4.5)
is explained. The advantage of this methodology
is that the rules can be applied to the same system
with different parameters. Once the rules have
been defined, fault library is build in an automatic
way based on the current measurements. As the
rules include qualitative knowledge from measure-
ments with regard to the output, the rules can be
applied to the system with different input signals
(frequency and magnitude).

Combination of approaches has been successful.
Interval models and structural analysis, tech-
niques from FDI with classification algorithms
and qualitative reasoning from AI have been com-
plemented for making a more complete fault diag-
nosis system. The fault diagnosis capability was
demonstrated with simulated data.

Future work consists on improving the rules in
order to give quantities of intensity and size of the
fault depending on how well a variable belongs to
a specific fault. Generation of additional symp-
toms is another future work. Further research will
concern fault diagnosis with real data and more
complex systems.

ACKNOWLEDGEMENTS

This work has been funded by Mexican National
Council for Science and Technology (CONACyT),
the European Union (European Regional Devel-
opment Fund) and the Spanish government (Plan
Nacional de Investigación Cient́ıfica, Desarrollo
e Innovación Tecnológica, Ministerio de Ciencia
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