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Abstract: The optical behaviour of the (human) cornea is often characterized
with the Zernike-coefficients derived via the Zernike-transform of its optical power
map. In this paper, a radial transform based on the Chebyshev-polynomials of the
second kind is suggested for a surface-based, rather than an optical power map
based representation of the cornea. This transform is well-suited for providing
compact representations for quasi-hemispherical surfaces, and after appropriate
argument-transform applied to these polynomials also for spherical-calotte-like
surfaces. Examples illustrating the effect of the argument-transformation are also
included in the paper. Copyright c©2005 IFAC.
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1. INTRODUCTION

Cornea topographs are widely used in ophthal-
mologic diagnostics for video-keratoscopic exam-
inations of patients. The purpose of such an ex-
amination is to determine and display the shape
and/or the optical power of the living cornea.
The cornea surface and the optical power of the
cornea are normally displayed as a map (Corbett
et al., 1999). Such a map indicates either the
actual height of the cornea surface, or, in case of
an optical power map, the actual optical power at
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the particular cornea location. The map is then
closely inspected by an ophthalmologist.

From this optical power map, optical aberration-
features (e.g., astigmatism, coma) of the cornea
are calculated by the cornea topograph. The oph-
thalmologist then evaluates the optical aberra-
tions of the cornea, and using this and other infor-
mation - e.g., the optical aberration of the whole
eye measured with a Shack-Hartmann wavefront
sensor - she chooses an appropriate treatment
for the patient. For example, decides whether a
sight-correcting laser operation of the eye would
be beneficial for the patient, or not. With such
operations the cornea is reshaped, and as an ef-
fect its optical surface and optical power is mod-
ified. Clearly, the precise knowledge of and the



appropriate representation of the surface data is
essential for the success of the operation.

Precise and quick representation of the corneal
surface is also very important for the investigation
of the tear-film behaviour (Németh et al., 2002).
In this paper, a radial orthogonal transforma-
tion that has promising features to generate con-
cise representation of hemisphere-like surfaces is
presented. This surface-based representation ap-
proach provides an alternative to the Zernike-
based representation.

In Section 2, a radial orthogonal transformation
that has the potential of producing a concise
representation of hemisphere-like surfaces is cho-
sen and described. In Section 3, an argument-
transformation-based approach is presented that
modifies the chosen orthogonal transformation, so
that its application to calotte-like surfaces - such
as the surface of a human cornea - will result in
concise representation of such surfaces. In Sec-
tion 4, some of the radial basis functions of the
transformations and their modified versions for
calotte-like surfaces are discussed. In Section 5,
the future work with respect to the application of
these transformations to cornea representations is
outlined.

2. MATHEMATICAL MODELLING OF
HEMISPHERE-LIKE SURFACES

A surface - e.g., a corneal surface - can be de-
scribed by a two-variable function f(x,y). The ap-
plication of the polar transform to variables x and
y results in

x = r cos ϕ, y = r sin ϕ, (1)

where r and ϕ are the radial and the azimuthal
variables, respectively, over the unit disk, i.e.,
where

0 ≤ r ≤ 1, 0 ≤ ϕ ≤ 2π.

Using r and ϕ, f(x,y) can be transcribed in the
following form:

F (r, ϕ) := f(r cos ϕ, r sinϕ) (2)

Function F is often expressed in Zernike-basis
(Iskander et al., 2001; Iskander et al., 2002).
The Zernike-basis is derived from the Zernike-
polynomials in the following manner

Zm
n (r, ϕ) := Rm

n (r)eimϕ, (3)

where 0 ≤ |m| ≤ n and m ∈ Z and n ∈ N.
The Zernike-function Z4

2 is shown in Fig. 1 as an
illustration.

The system of Zernike-functions is orthogonal over
the unit-circle with respect to the measure r dr dϕ,
that is
∫ 1

0

∫ 2π

0

Zm
n (r, ϕ)Z

m′

n′ (r, ϕ)r drdϕ =
π

n + 1
δnn′δmm′ ,
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Fig. 1. The Zernike-function Z4
2

where δnn′ is the Kronecker-symbol.

It is of interest to note that the Zernike-polynomials
Rm

n can be expressed by the Jacobi-polynomials

Pα,β
k :

Rm
n (r) = (−1)(n−m)/2rmPm,0

(n−m)/2(1 − 2r2).

With an eye on the efficient representation of real
cornea surfaces, an alternative to the Zernike-
system firstly for hemisphere-like surfaces is pro-
posed. This system is based upon another well-
known orthogonal system of functions, namely,
the Chebyshev-polynomials of 2nd kind. The
Chebyshev-polynomials of 2nd kind belong to the
class of the Jacobi-polynomials with parameters
α = 1/2 and β = 1/2, see e.g. (Szegö, 1981).

The reasons for selecting these functions based on
Chebyshev-polynomials are manifold. Firstly, the
Chebyshev-polynomials are closely connected to
the trigonometric system – an argument trans-
form leads from the one to the other - and hence
many of the methods and algorithms that are
readily available for the trigonometric system are
expected to work well also with the new sys-
tem. Secondly, the application of the summation
methods frequently used in conjunction with the
trigonometric systems results in approximations
that are uniformly convergent (i.e. convergent in
C1 norm) over the unit circle. Thirdly, the poly-
nomials of the Chebyshev-system are orthogonal
with respect to the weight function

√
1 − r2 (0 ≤

r ≤ 1). As a consequence, the function F (r, ϕ) =√
1 − r2, which describes a hemisphere (see Fig.

2), can be represented using the proposed system
and its weight function as a single component.

This is of great significance for the mentioned
application area, as the ideal cornea surface is
often modelled as a spherical surface, i.e. its
representation is very concise.

The Chebyshev-polynomials of 2nd kind can be
introduced as follows: it can simply be proved,
that sinnt/ sin t can be expressed as the polyno-
mial of degree n − 1 of cos t, i.e.
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Fig. 2. The hemisphere over the unit circle

sinnt

sin t
= Un(cos t) (t ∈ R, n ∈ N). (4)

The Chebyshev-polynomials of second kind satisfy
the following second order recursion

U1(x) = 1, U2(x) = 2x,

Un+1(x) = 2xUn(x) − Un−1(x) (5)

(x ∈ R, n = 1, 2, · · · ).
Since functions Un are even and odd for odd and
even index values n ∈ N, respectively, both the
system of even functions, namely Vn := U2n−1,
and the system of odd functions, namely Wn :=
U2n are orthogonal over the interval [0, 1], i.e. the
following orthogonality relations can be expressed:

∫ 1

0

Vn(r)Vm(r)
√

1 − r2 dr =
π

4
δmn (6)

∫ 1

0

Wn(r)Wm(r)
√

1 − r2 dr =
π

4
δmn. (7)

In the rest of the paper, only the Vn system will
be considered. Building upon the Vn system, let
the following system of complex valued functions
of variables r and φ be introduced:

Vnm(r, ϕ) := Vn(r)eimϕ (8)

((r, ϕ) ∈ I, n ∈ N,m ∈ Z)

This system – according to the orthogonality of
the trigonometrical system – forms a complete
orthogonal system in the unit disk D := {(x, y) :
x2 + y2 ≦ 1} with respect to the weight-function
ρ(r, φ) =

√
1 − r2, where ((r, φ) ∈ I := [0, 1] ×

[0, 2π]), i.e.

∫ 1

0

∫ 2π

0

Vnm(r, ϕ)Vn′m′(r, ϕ)ρ(r, ϕ)dϕdr=
π2

2
δmm′δnn′

((m,n), (m′, n′) ∈ N := N × Z). (9)

The systems Vnm and Vnmρ ((n,m) ∈ N ) can
be interpreted as a bi-orthogonal system in L2(I),
with respect to the inner product

〈f, g〉 :=

∫ 1

0

∫ 2π

0

f(r, ϕ)g(r, ϕ) ρ(r, ϕ) dϕdr

Hence any function F ∈ L2(I) can be realized by

F ∼
∑

(n,m)∈N

〈F,Vnm〉Vnmρ (10)

bi-orthogonal representation.

Specifically, if F (r, φ) :=
√

1 − r2 – i.e. a hemi-
sphere surface, as shown in Fig. 2 – the represen-
tation will be reduced to a single component.
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Fig. 3. The Chebyshev function V4
3

The representation (10) forms the basis of com-
putation algorithms. All the practical numerical
algorithms for computing the coefficients of a
representation require some sort of discretization.
Efficient algorithms can be obtained by choos-
ing appropriate discretization. Let the following
system of discrete points for the discretization of
system Vn be introduced:

INM := {(rN
k , ϕM

ℓ ) : 1 ≤ k ≤ N, 0 ≤ ℓ < M}
where

rN
k := cos

kπ

2N + 1
(k = 1, 2, · · · , N) (11)

ϕM
ℓ :=2πℓ/M (ℓ = 0, 1, · · · ,M − 1), (12)

rN
k points are placed according to the positive

roots of the polynomial VN . It can easily be shown,
that the system Vn system is orthogonal with
respect to the discrete inner-product

[f, g]N :=

N∑

k=1

f(rN
k )g(rN

k )(1 − |rN
k |2). (13)

This orthogonality relation forms the basis for
applying fast computational algorithms, e.g. FFT,
for the approximate computing the coefficients of
the surface representation.

3. THE ARGUMENT TRANSFORM

Argument transforms are widely used for gener-
ating new systems for ones already known. Many
well-known orthogonal systems can be derived
from the trigonometric system using various ar-
gument transforms. The Chebyshev-polynomials
of the first and second kind, for example, are



derived from the cos nx, sin nx/ sin x trigonomet-
ric systems, respectively, using the x = arccos x
argument transform.

r = 7.7 mm

11 mm

23.89 mm

Fig. 4. Cornea on Gullstrand eye-model

The convenience of the argument transform ap-
plied to a trigonometric system has been demon-
strated also in the field of signals and systems
theory by (Soumelidis et al., 2002). A notewor-
thy example for the use of argument transform
in the given context is the generation of the
discrete Laguerre-system from the einx complex
trigonometric system. This exquisite origin of the
Laguerre-system turns out to be very advanta-
geous in several respects; e.g., in the computing
of the Fourier-coefficients, or in the creation of
discrete orthogonal systems.
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Fig. 5. A cornea-like ”calotte” surface

Using the approach of argument transform de-
scribed below, various useful orthogonal systems
can be built from the Vn(r) functions. The func-
tions generated in this manner are orthogonal
with respect to a non-negative weight function
ρ(t) (0 ≤ t ≤ 1). The actual weight function
can be chosen to match the requirements of the
given application. E.g., when dealing with cornea
surfaces - that is, surfaces assumed to be spheri-
cal calotte-like surfaces according to the relative
simple Gullstrand eye-model shown in Fig. 4 –
the proper choice for the weight function could be
a circular segment rather than a semi-circle. In
this case, the weight function

√
1 − r2 – which is

used together with the original Vn(r) functions –
is replaced by

ϕa(r) :=
√

a2 − r2 −
√

a2 − 1 (14)

(0 ≤ r ≤ 1, a ≥ 1).

For the standard cornea dimensions shown in Fig.
1, the value of parameter a is 1.4.

Applying the continuously differentiable bijection
R : [0, 1] → [0, 1] on function Vn(r) and using the
argument transform r = R(t) for (6), results in

π

4
δmn =

∫ 1

0

Vm(r)Vn(r)
√

1 − r2 dr =

=

∫ 1

0

Vm(R(t))Vn(R(t))R′(t)
√

1 − R(t)2 dt

Let the function R together with an appropriate
constant c - be chosen in the following manner:

R′(t)
√

1 − R2(t) = cρ(t) (0 ≤ t ≤ 1) (15)

where ρ(t) is the required weight function for a
particular application. This choice of function R
results in a non-linear differential equation. In
order to solve this differential equation, consider
that the left-hand-side of this differential equation
can be re-written as dΦ(R(t))/dt, where

Φ′(x) =
√

1 − x2 (−1 ≤ x ≤ 1) (16)

Φ(x) =
x

2

√
1 − x2 +

1

2
arcsin x.

With the mentioned transcription, the above dif-
ferential equation takes the following form:

d

dt
Φ(R(t)) = cρ(t) (17)

Integrating both sides of the equation according
to variable t, and taking into consideration that
R(0) = 0 and R(1) = 1,

Φ(R(r)) = c

∫ r

0

ρ(t) dt (0 ≤ r ≤ 1) (18)

is obtained, while for constant c

c =
Φ(1)

∫ 1

0
ρ(t) dt

=
π

4
∫ 1

0
ρ(t) dt

. (19)

Using these results, the sought argument trans-

form is as follows.

R(r) = Φ−1
(
c

∫ r

0

ρ(t) dt
)

(0 ≤ r ≤ 1), (20)

where Φ−1 is the inverse function of Φ. Practically,
by this train of thought the following theorem has
been proved:

Theorem 1. Let ρ(r) (r ∈ [0, 1]) be a contin-
uous non-negative function, starting from the
Chebyshev-polynomials of 2nd kind Vn := U2n−1

by applying the argument-transform defined by
(19) and (20) let the function

Y ρ
n (r) := Vn(R(r)) (n ∈ N, 0 ≤ r ≤ 1), (21)

be introduced. In this case, the following orthog-
onality relation holds:

∫ 1

0

Y ρ
n (r)Y ρ

m(r) ρ(r) dr = cρδmn (22)



where

cρ :=

∫ 1

0

ρ(t) dt, m, n ∈ N).
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Fig. 6. The Chebyshev function V6,10

A discrete form of the orthogonality relation (22)
also stands:

[f, g]ρ,N :=
∑

t∈T ρ

N

f(t)g(t)(1 − R2(t)) (23)

for T ρ
N system of the discrete measurement points

formed by applying R−1 to the radial values rN
k

of (11), while discretization on the azimuthal
variable ϕ can the same as in (12).

4. MODELLING OF CALOTTE-LIKE
SURFACES

As shown in Fig. 4, the Gullstrand eye-model
describes the corneal surface as a spherical calotte.
One can use the argument transform approach –
described in detail in Section 3 for any arbitrary
non-negative weight function - for the weight
function ϕa(r) (defined in (14). For this particular
weight function – i.e., calculating (18) and (19)
with ρ(t) := ϕa(t) – the argument transform
shown in Figure 8 is obtained.

The argument transform shifts the Chebyshev-
polynomials and their roots in a non-linear fashion
determined by the argument transform function.
Figure 9 indicates how this argument transform
tunes a particular Chebyshev-polynomial. The
effect is also visible, if the grayscale plots of
the original function V6,10 and of the modified

function V̂6,10 in Figures 6 and 7, respectively, are
compared.

Looking closely at the functions of the proposed
system (e.g., at the function represented in Figure
6), and also those of the modified system (e.g.,
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Fig. 7. The modified Chebyshev-function V̂6,10

resulting from the argument-transform shown
in Figure 8 being applied to the Chebyshev-
function V6,10
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Fig. 8. The argument-function for a circular sec-
tion (a=1.4) shaped weight function
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Fig. 9. The Chebyshev-polynomial V6 modified
according to the argument-function shown in
Fig. 8

at the function represented in Figure 10), they
behave rather ”awkwardly” over the origin: they
take on a wide range of values near and over the
origin. (In the figures, this behaviour is indicated
by the crisp star-like artifacts in the centre of the
circle.) Such behaviour clearly should be avoided
if real cornea surfaces are to be modelled.
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Fig. 10. The modified Chebyshev-function V̆6,10

resulting from the argument-transform shown
in Figure 11 being applied to the Chebyshev-
function V6,10
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Fig. 11. The argument-function for a weight func-
tion that looks like a circular section (a=1.4)
turned upside-down
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Fig. 12. A Chebyshev-polynomial V6 modified
according to the argument-function shown in
Fig. 11

In order to save the useability of the Chebyshev-
based system proposed in this paper, elimina-
tion of this artifact is necessary e.g. by choosing
weighting functions that take 0 at the origin and
are smooth and flat enough. One can use, for
example, a weighting function φb that resembles
a circular segment turned upside down, that is

ϕb(r) := a −
√

a2 − r2 (24)

(0 ≤ r ≤ 1, a ≥ 1).

The use of this weight function in (18) and (19)
radically flattens the Chebyshev-polynomials as it
is shown in Fig. 12 for V6. It should be noted that
the awkward behaviour over the origin of function
V̆6,10 (see Fig. 10) still remains. It is the properly
selected weight function (24) that smoothes the
elements in the representation series.

5. CONCLUSION AND FUTURE WORK

In this paper, an alternative to the radial Zernike-
transformation has been proposed. The proposed
orthogonal system of radial functions is based on
the Chebyshev-polynomials of the second kind.
This system has promising features for represent-
ing cornea surfaces, especially, if a properly se-
lected argument transform is applied to its func-
tions. Though, the functions of the original system
and its ”näıve” modifications exhibit awkward
behaviour in the centre of the unit-disc, with a
better selection of the weight function - and con-
sequently of the argument transform - produces
functions that are applicable to the area of cornea
topography. It should be emphasized that further
work is required a) in testing the proposed systems
capability of representing calotte-like smooth sur-
faces, b) to derive and check the discrete version
of the proposed system and verify its usefulness
and precision in representing real cornea surfaces.
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