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Abstract: A systematic approach for constructing interpretable fuzzy model based on 
reduction methodology is proposed. Fuzzy clustering algorithm, combined with least 
square method, is used to identify initial fuzzy model with overestimated rule number. 
Orthogonal least square algorithm and similar fuzzy sets merging are then applied to 
remove redundancy of the fuzzy model. In order to obtain high accuracy, yet preserving 
interpretability, a constrained real coded genetic algorithm is utilized to optimize reduced 
fuzzy model. The proposed method was applied to automobile MPG prediction, and 
results show its validity.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
In recent years, data-driven fuzzy modelling 
techniques have become an active research area, and 
applied in many fields for classification, data mining, 
pattern recognition, simulation, analysis, prediction, 
control. Different from mathematical models and 
neural networks, fuzzy models provide with some 
distinctive features including knowledge expression 
using if-then rules and mechanism of human-like 
reasoning in linguistic manner, which are the most 
distinguishable features of fuzzy models.  
 
Several approaches have been proposed to identify 
fuzzy models from measured data: fuzzy clustering 

(Gomez-Skarmeta, et al., 1999), neural-fuzzy 
systems (Lefteri, et al., 1997), genetic rule 
generation (Cordon, et al., 2001). All these methods 
utilize only the function approximation of fuzzy 
models, and more emphasis is put on the numerical 
performance. However, interpretability, which is the 
most prominent feature distinguished fuzzy systems 
from many other models, is often neglected. As a 
result, the fuzzy model generated is redundant, less 
generalized and uninterpretable. 
In order to improve the interpretability of fuzzy 
models, some methods have been developed. Setnes, 

et al. proposed a set-theoretic similarity measure to 
quantify the similarity among fuzzy sets, and to 
reduce the number of fuzzy sets in the model. Yen, et 
al. introduce several orthogonal transformation 
techniques for selecting the most important fuzzy 
rules from a given rule base in order to construct a 
compact fuzzy model. Abonyi, et al. propose a 
combined method to create simple Takagi-Sugeno 
fuzzy model that can be effectively used to represent 
complex system. Roubos, et al. present an approach 
to identify compact and accurate fuzzy model based 
on iterative complexity reduction combined with 
fuzzy clustering and multi-objective genetic 
algorithm optimization. 
 
This paper develops a systematic technique to 
construct interpretable, yet accurate fuzzy model 
based on reduction methodology. In section 2, the 
initial fuzzy model is identified based on fuzzy 
clustering, including fast input variable selection. 
Rule reduction and similar fuzzy sets merging are 
used to improve its interpretability in section 3. Then 
constrained genetic algorithm is utilized to reach 
higher precision performance in section 4. In section 
5, the method is demonstrated on the automobile 
MPG prediction problem. Section 6 concludes the 
paper. 



 

     

2. IDENTIFICATION OF FUZZY MODEL 
 
 
2.1  Takagi-Sugeno Fuzzy model 
 
The Takagi-Sugeno (TS) Fuzzy model is usually 
used as data-driven fuzzy model. A typical fuzzy rule 
of the model has the form: 
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where Ri is the ith rule, xj are the input variables, Aij 
are fuzzy sets defined on the universe of discourse of 
the input. ˆ ( )i iy f x=  is usually a linear polynomial 
function in the input variables. 
 
In TS fuzzy model, each fuzzy rule describes a local 
linear model. All these local models combine to 
describe the global behaviours of a non-linear 
complex system. The output of the TS fuzzy model is 
computed using the normalized fuzzy mean formula: 
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where c it the number of rules, Pi is the normalized 
firing strength of the ith rule: 
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Given N input-output data pairs { , }k kx y ,the model 
in (2) can be written as a linear regression problem 
 y P eθ= +                                (4) 
where θ  is consequents matrix of rules, and e is 
approximation error matrix.  
 
In this paper, Gaussian membership functions are 
used to represent the fuzzy set Aij 
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where vij and ijσ  represent centre and variance of 
Gaussian function respectively. 
 
 
2.2  Input variable selection of TS fuzzy model  
 
Input variable selection is the principal element in 
fuzzy modelling, which is a process to choose a 
small subset of input variables from a large set of 
input variable candidates, ideally necessary and 
sufficient to satisfy the needs of modelling. 
 
Exhaust searching method of input variable subsets 
is impossible due to dimensional disaster in practice 
when there are many input variables, though it is 
feasible in theory. So a new input variable selection 
method is proposed in this paper. 
Firstly, a zero-order TS fuzzy model is constructed 
using all input variable candidates. Then for each 
single input variable, the corresponding model output 
is calculated neglected other variables contribution. 
The model output change indicates the importance of 

the input variable. The larger the output change is, 
the more important the input variable is. 
 
Given N input-output data, for a specific input 
variable xi, there is output vector 1 2, , ,i i i i

NY y y y⎡ ⎤= ⎣ ⎦L . 

The output change indicating the importance of the 
ith input variable is defined: 
 max( ) min( )i i

iO Y Y∆ = −                   (6) 
 
The input variable selection is carried out according 
to the following step: 
1) Define the normalized importance measure for the 
ith input variable by 
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Obviously, the larger value of Mi is, the more 
important of the ith input variable is. The variable 
with Mi =1 is the most important. A small value of Mi 
corresponds to a relatively unimportant input variable. 
 
2) Given a threshold (0,1)λ ∈ . When Mi is less than 
the threshold, i.e. iM λ< , the corresponding ith 
input variable is believed to be unimportant and 
should be removed.  
 
3) Given a threshold (0,1)τ ∈ . Calculate the 
correlation function between the selected input 
variables {xi, xj} to recognize the closely related 
input variables by 
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where , , ,i j i jx x φ φ  are the means and variances of 
input variable xi and xj respectively. If ( , )i jx xσ τ> , 

then xi is closely related to xj, thus remove the one 
with smaller value of Mi. 
 
4) As a result, the task of input variable selection is 
completed, and a subset of p significant input 
variables is selected for the fuzzy model. 
 
 
2.3  Identification  of TS Fuzzy Model 
 
It is generally acknowledged that fuzzy clustering is 
a well-recognized paradigm to generate initial fuzzy 
model. The G-K algorithm (Gustafson and Kessel, 
1979) is employed in this paper. 
 
The objective function of G-K algorithm is described 
following: 
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where Z is the set of data, [ ]ikU µ=  is the fuzzy 
partition matrix, 1 2[ , , , ]T

cV V V V= L  is the set of 
centres of the clusters, c  is the number of clusters, 
N  is the number of data, m  is the fuzzy coefficient 



 

     

fuzziness, ikµ  is the membership degree between the 
ith cluster and kth data, which satisfy conditions:   
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The norm of distance between the ith cluster and kth 
data is 
 2 2|| || ( ) ( )

iik k i A k i i k iD z v z v A z v= − = − −    (11) 
where 
 1/ 1( det( )) n

i i iA F Fρ −=                    (12) 
 det( )iA ρ=                                    (13) 
n is the dimension of data Z, Fi is the fuzzy 
covariance matrix of ith cluster. 
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Lagrange multiplier is used to optimize the objective 
function (9) and the minimum of (U, V) is calculated 
as follows:] 
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The TS modelling methodology is essentially a 
multi-model approach in which simple local sub-
models are coupled to describe the global behaviours 
of the system. Since one of the important motivations 
of using the TS model is to gain insights into the 
model, it is important to investigate the local 
interpretation issue of the TS model. Here weighted 
least square estimation is employed construct more 
interpretable local models. 
 
Given the input variable X, output y and fuzzy 
partition matrix U as following: 
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Appending a unitary column to X gives the extended 
matrix Xe: 
 [ ]1eX X=                          (18) 
Then  
 1[ ]T T

i e i e e iX U X X U yθ −=         (19) 
is the solution of (4), i.e. the consequent parameters 
of fuzzy model. 
 
The procedure of constructing initial fuzzy model is 
summarized as follows: 
1) Choose the number of fuzzy rules and the 
weighting exponent, and the stop criterion 0ε > . 
2) Generate the matrix U with the membership 
randomly; U must satisfy the condition (10). 

3) Compute the centres of the clusters using (16) and 
fuzzy covariance matrix by (14). 
4) Calculate norm of distance utilizing (11). 
5) Update the partition matrix U using (15); 
6) Stop if ( ) ( 1)l lU U ε−− ≤ , else go to 3). 

7) Compute the consequence parameters of the fuzzy 
model using (19) 
 
 
3. INTERPRETABLITY IMPROVEMENT 
 
 
3.1  Some issues about interpretability 
 
Apart from precision performance, interpretability is 
another important feature of fuzzy model. Though 
there is no formal definition about interpretability, 
some important elements can be concluded mainly as 
follows. 
 
1) The fuzzy model should use least possible 
variables, and each rule should use as few variables 
as possible. 2) The number of rules should not 
exceed ten experientially. The rules must be 
consistent and not conflictive. The rule base should 
be complete, compact and has no redundancy. 3) The 
fuzzy membership functions should be both complete 
and distinguishable, so that a linguistic term could be 
associated with a fuzzy set.  
 
 
3.2  Rule reduction by orthogonal least square 
 
The initial fuzzy model is complete and consistent 
which are essential for interpretability. However, it 
contains redundant fuzzy rules hampering its 
interpretability. This problem is solved by rule 
reduction using orthogonal transformation method 
(Yen, et al., 1999). 
 
Orthogonal transformation methods define 
importance measure for each rule to determine if it 
should be retained or eliminated. Singular value 
decomposition method and orthogonal least square 
algorithm are the most applied orthogonal 
transformation techniques. In Singular value 
decomposition method, the estimation of the 
effective rank of firing matrix influences important 
measures, and different estimation leads to different 
result. Orthogonal least square algorithm avoids this 
objective error and is adopted in this paper. 
 
The orthogonal least square method transforms the 
columns of the firing matrix into a set of orthogonal 
basis vectors. With Gram–Schmidt orthogonalization 
procedure, firing strength matrix P is decomposed 
into  
 P WA=                                 (20) 
where W is a matrix with orthogonal columns wi, and 
A is an upper triangular matrix with unity diagonal 
elements. 
 
Substituting (20) into (4) yields 



 

     

 y WA e Wg eθ= + = +                   (21) 
where g Aθ= . Since the columns wi of W are 
orthogonal, the sum of squares of y(k) can be written 
as 
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Dividing N on both side of (22), it can be seen that 
the part of the output variance yTy/N explained by the 
regressors is /T

i i ig w w N∑ , and an error reduction 
ratio due to an individual rule is defined as 
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This ratio offers a simple means for seeking a subset 
of important rules in a forward-regression manner. If 
it is decided that r rules are used to construct a fuzzy 
model, then the first r rules with the largest error 
reduction ratios will be selected. 
 
Without paying any attention to the premise 
structures, this method is possible to give a high 
importance to redundant fuzzy rules with high firing 
degrees due to their contributions to the output. This 
drawback can be solved by a simple modification to 
the method. Each time a new rule is selected, its 
corresponding column vector is analyzed. If the 
vector is a linear combination of the firing vectors 
corresponding to the previously selected rules, then it 
should not be assigned a high importance. 
 
After rule reduction, the simplified fuzzy model is 
more interpretable for removing excessive fuzzy 
rules. Constrained genetic algorithm is then adopted 
to improve its precision. 
 
 
3.3  Similar fuzzy sets merging 
 
The simplified fuzzy model obtained above may 
contain redundant information in the form of 
similarity between fuzzy sets. The similarity of fuzzy 
sets makes the fuzzy model uninterpretable, for it is 
difficult to assign qualitatively meaningful labels to 
similar fuzzy sets. In order to acquire an effective 
and interpretable fuzzy model, elimination of 
redundancy and making the fuzzy model as simple as 
possible are necessary.  
 
There are three types of redundant or similar fuzzy 
sets in fuzzy model: 1) fuzzy set similar to the 
universal set, 2) fuzzy set similar to singleton set, 
and 3) fuzzy set A is similar to fuzzy set B.  
 
If fuzzy set is similar to universal set or singleton set, 
it should be removed from the corresponding fuzzy 
rule antecedent. As for two similar fuzzy sets, a 
similarity measure is unutilized to determine if fuzzy 
sets should be combined. 
 

For fuzzy sets A and B, a set-theoretic operation 
based similarity measure M (Setnes and Babuska, 
1998) is defined as 
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where | |⋅  denotes the cardinality of a set, the ∩  and 

∪  operators represent the intersection and union 
respectively. For { | 1, 2, , }jX x j m= = L , this can be 
rewritten as 
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where ∧  and ∨  are the minimum and maximum 
operators respectively. S is a similarity measure in 
[0,1]. S=1 means the compared fuzzy sets are equal, 
while S=0 indicates that there is no overlapping 
between fuzzy sets. 
 
If similarity measure ( , )S A B λ> , i.e. fuzzy sets are 
very similar, then the two fuzzy sets A and B should 
be merged to create a new fuzzy set C, where λ  is a 
predefined threshold. It should be pointed out that 
threshold λ  influences the model performance 
significantly. Small threshold generates low accurate 
and high interpretable fuzzy model. In a general way, 

[0.4 0.7]λ = −  is a good choice. 

 
For Gaussian type of fuzzy sets used in this paper, 
the parameters of new merged fuzzy set C from A 
and B are defined as 
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Fuzzy sets merging process is carried out iteratively. 
In each iteration, the similarities between all pairs of 
fuzzy sets for each variable are calculated. The pair 
of highly similar fuzzy sets with S λ>  is merged to 
create a new fuzzy set, thus, the rule base of fuzzy 
model is updated. This process continues until there 
are no fuzzy sets for which S λ> . Then the fuzzy 
sets that have similarity to the universal set or 
singleton set are removed.  
 
 

4. GENETIC ALGORITHM OPTIMIZATION 
 
After rule reduction and similar fuzzy sets merging, 
the obtained fuzzy model is rude and inaccurate. In 
order to improve the precision of the fuzzy model, 
while preserve its interpretability, a constrained 
genetic algorithm (GA) based method is applied to 
optimize parameters of antecedent and consequent 
simultaneously. 
 
This paper adopts a real coded genetic algorithm due 
to its high searching efficiency and intuitionistic 
representation of chromosome. The main aspects of a 



 

     

GA include: chromosome representation of fuzzy 
model, genetic operators and constraints handling. 
 
With a predefined population size, the parameters of 
fuzzy model in a chromosome that describes 
antecedent and consequent parameters are encoded 
sequentially. The initial population is generated 
randomly within the chromosome constraints. 
Roulette wheel selection, simple arithmetical 
crossover and uniform mutation are chosen as 
genetic operators.  
 
The optimization is subject to search space 
constraints in the interest of reserving interpretability. 
The premise parameters are limited to change in a 
range of %α±  around their initial value in order to 
preserve the distinguishability of the fuzzy sets. For 
the sake of maintaining the local interpretability of 
fuzzy model, the consequent parameters are 
restricted to vary %β±  of the corresponding 
consequent parameters. 
 
 

5. EXAMPLES 
 
In order to illustrate the performance of the proposed 
technique of constructing interpretable fuzzy model, 
the well-known automobile MPG (Miles Per Gallon) 
prediction benchmark is demonstrated in this section. 
Automobile MPG prediction is a typical nonlinear 
regression problem. The goal is to predict the fuel 
consumption of an automobile based on five features 
including displacement, horsepower, weight, 
acceleration and model year. The data consisting of 
392 measurements is divided into two parts equally: 
the training set and the checking set. 
 
A zero-order TS fuzzy model is constructed with all 
five features to select input variables. The 
normalized importance measures of five input 
variables are [0.1204, 0.0177, 1.0000, 0, 0.1507]. So 
the importance sequence of input variables is: weight, 
year, displacement, horsepower, and acceleration. 
Obviously, weight and year can be selected as the 
significant input variable candidates. Weight has 
little relation with year because the correlation 
coefficient between them is 0.2992. Clearly, the 
features of weight and year are used as input 
variables for the following fuzzy model. 
 

 

The initial fuzz model is identified with five rules by 
clustering algorithm and weighted least square 
method. Fig.1 shows heavily overlapped membership 
functions of rules, and it indicates that the initial 
fuzzy model contains excessive rules. 
 
The orthogonal least square method is used to select 
a set of important fuzzy rules. As result, error 
reduction ratio of rules are [0.1025, 0.3702, 0.4153, 
0.0466, 0.0415] respectively. Obviously, the second 
and the third rule are the most important rules and are 
selected to compose a more compact and 
interpretable fuzzy model. This fuzzy model is then 
optimized using constrained GA algorithm. The root 
mean-square error (RMSE) of the model is 2.86 and 
2.97 for training data and checking data respectively. 
 
Fig.2 presents membership functions of the fuzzy 
model with two obtained fuzzy rules. Evidently, 
membership functions of “year” are much overlapped. 
The similarity measure between them is 0.8297, so 
the two fuzzy sets of “year” are merged into a new 
fuzzy set that is similar to universal set, and is 
removed from the antecedent of rules. 
 

 
 

 

 
 
 
After deleting input variable of “year” from the 
antecedent, the RMSEs of the fuzzy model 
deteriorate to 5.64 and 5.36 for training data and 
checking data. Constrained genetic algorithm is then 
unutilized to improve accuracy of fuzzy model, while 
preserving its interpretability. The final fuzzy model, 
with improved precision of 3.28 and 3.17, is 
described as follows:  

Fig.1. Membership functions of the model with 5 rules 

Fig.2. Membership functions of the model with 2 rules

Fig.3. Membership functions of the final model 



 

     

1
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2
2

: If  is ,  
      Then MPG=-0.0053 2.0071 46.3304

: If  is ,  
      Then MPG=-0.0071 0.6220 2.8766

R weight A
weight year

R weight A
weight year

+ −

+ −

 

where A1 and A2 are showed in Fig.3. 
 
Table 1 illustrates the comparison results of neural 
networks and linear regression model with obtained 
fuzzy model. It shows that the linear regression 
model is the most interpretable and worst precise 
model, while neural network is absolutely 
uninterpretable and highest accurate. The fuzzy 
model constructed is interpretable, and owns an 
acceptable precision. 

 
Table 1 Comparison of different methods 

 
method training error  checking error 
Linear model 3.54 3.44 
neural networks 2.69 2.87 
our method 3.28 3.17 

 
 
 
 

6. CONCLUSIONS 
 
 
In this paper, a systematic technique to construct 
interpretable, yet accurate fuzzy model based on 
reduction methodology is presented.  
 
A new input variables selection algorithm is 
proposed to select the most influenced variables. 
Fuzzy clustering, combined with least square method, 
is used to identify initial fuzzy model. Orthogonal 
least square method and similar fuzzy sets merging 
are used to remove redundancy of fuzzy model and 
improve its interpretability. In order to obtain high 
precision model, yet containing interpretability, a 
constrained real coded genetic algorithm is utilized 
to optimize fuzzy model. The approach is applied to 
Automobile MPG prediction benchmark, and the 
result shows its validity. 
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