
A CONSTRAINED STOCHASTIC PRODUCTION PLANNING PROBLEM
WITH IMPERFECT INFORMATION OF INVENTORY

Oscar S. Silva Filho

Centro de Pesquisas Renato Archer
Rod. D. Pedro I, Km. 143,6

13089-500 - Campinas – São Paulo - Brazil
Email: oscar.salviano@cenpra.gov.br

Abstract: In this paper, an aggregate production planning problem is formulated
as a chance-constrained stochastic control problem under imperfect information of
states (i.e., the inventory levels). Using the Kalman filter device, the mean and
covariance of state variables are estimated. Then the certainty equivalence
principle is applied, resulting in a deterministic problem that is equivalent to the
original formulation. In order to provide a sequential optimal solution to the
equivalent problem, the Naive Feedback Controller (NFC) approach is used. It
provides a revised sub-optimal production policy to the stochastic problem. An
example illustrates the applicability of this approach. Copyright@2005 IFAC
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1. INTRODUCTION

One of the first actions in a hierarchical decision
chain is the elaboration of an aggregated production
plan, see Hax and Candea (1985) and Tsubone, et al.
(1991). The basic idea of this plan is to identify the
quantity of inventory and workforce (man hour)
levels that will be required by the company to
produce its products at future periods. Surely, this is
not an easy task even for an expert manager. The
reason is that there are a variety of uncertainties
associated with the process of identifying the quantity
of the raw-materials required to be used in the shop
floor. These uncertainties are due to exogenous and
endogenous factors. For example, exogenous factors
are to know a priori if a given supplied material will
be considered appropriate to consume during the
quality test; or to know precisely how will be the
behavior of demand in the next month. On the other
hand, endogenous factors are related to the quantity

of material lost or robbed during its handle in the
storeroom. As a direct consequence of the exogenous
and endogenous randomness, the inventory levels of
products may not be measured precisely. Thus, in
order to deal with the lack of accuracy about
inventory, a stochastic optimal control problem under
hypothesis of imperfect information of state must be
formulated, see (Kleindorfer, 1978; Neck, 1984;
Bertesekas, 1995).

This paper introduces a stochastic dynamic
optimization model to solve a multi-product, multi-
period production planning problem with constraints
on decision variables (i.e. inventory, workforce and
production levels) and finite planning horizon. It is
assumed that inventory levels are not known exactly;
as a result the inventory levels need to be estimated.
Thus, under an assumption of Gaussian uncertainties,
the implementation of a Kalman filter (Astron, 1970)
for   estimating    the    inventory    levels,   is     quite



convenient. The Gaussian nature of system and
measurement equations brings also, as a
consequence, that the inventory constraints are taken
in conditional probability in order to guarantee the
feasibility of the inventory levels.

The dimensionality and stochastic nature of the
system as a whole, with additional assumption of the
imperfect information of inventory levels, are factors
that bring extreme complexity to the problem
solution. A way to overcome this difficulty is to use
the Gaussian-Markov properties of the system and
measurement equations to convert the original
sequential stochastic problem into a deterministic
equivalent problem that includes explicitly the
associated conditional mean and covariance inventory
variables.

A true optimal sequential solution (i.e. optimal
feedback solution) of this equivalent problem is
practically impossible to obtain, primarily due to both
dimensionality (especially in practical cases) and
constraints involved. Consequently, it is necessary to
investigate alternatives that will make the problem
easier to be solved, mainly taking into consideration
the application of mathematical programming
methods available in the literature (Minoux, 1983).

 Optimal solutions based on sub-optimal procedures
can be an interesting field of investigation
(Bertesekas, 1995). In this way, a sub-optimal
approach named as Naive Feedback Controller
(NFC) is considered in this paper. It is easier for
numerical implementations than other sub-optimal
methods, see Silva Filho and Cezarino (2002).
Besides, it allows that the solution of the problem can
be revised periodically. For production application,
this means that the aggregated plan must be
constantly revised; as a consequence, managerial
insights about the dynamic of production
environment can be improved, see Silva Filho (2001)
and Silva Filho and Ventura (1999).

An illustrative example that provides a production
plan for two different families of products is
introduced. The idea is to compare the sub-optimal
solution of the stochastic problem under imperfect
information of state (i.e. inventory level) provided by
the NFC approach to the sub-optimal solutions
provided by the Open-loop and NFC approaches
applied to the same problem but under perfect
information of state. As a result, the quasi-adaptivity
propriety of the NFC approach  (Bertesekas, 1995) is
possible to be shown.

2. STOCHASTIC DYNAMIC PROBLEM

An optimal production planning described by the
sequence {(ui1 ui2 ... uiT); i=1, 2, N} can be obtained
by solving the following multi-product multi-period

stochastic production planning problem:
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where N is number of different product families and
T denotes the planning horizon (assumed as finite).
For each product i in period k, the decision variables,
cost functions and parameters  have the following
notation: uik is the  production level; xik is the
inventory level; wk  is the work-force level (man-
hour); zk is the  overtime (man-hour); yk  denotes the
observation level of inventory measurement; dik is the
demand level by products; vik denotes the measure
error. The costs incurred are: f(xik ) is  inventory cost;
g(uik) is the production cost; p(vk) denotes the work-
force cost. Other parameters are: Wk  is the maximum
number of regular work force (in man hour); αik is the
confidence level (probability degree); ηi is the man-
hour required to produce one unit of product i; πi  is
the productivity factor; xi0 is the initial inventory; Iik

is the  information available at period k; and  E(.)
denotes  expectation value operator.

The demand variable dik must be understood as being
a stochastic component of the inventory balance
system. Particularly, the evolution of demand over
the periods follows a stationary Gauss-Markov
process where the independent random variables dij

have mean E d ij d i
( )= µ and time-invariant variance

Var dij d i
( ) = ≥σ2 0 . It is worth emphasizing that such

process has been used, in practice, to represent
product demands determined by a prior forecasting
device or even from an historical of customers' orders
(i.e., historical of sales).

Since inventory level is not perfectly measured, an
output system given by (3) is used to provide a
measurement device that captures information about
inventory variable with error vik. This error is defined
as a normal distributed random variable, with mean

0v̂k =  and finite variance 02
v >σ . The constraint

(4) defines a safety stock (xik) associated with product
i, at period k. It is used as a guarantee that future, and
consequently uncertain, demands will be met. This
constraint is taken as a chance-constraint in order to
ensure that the inventory level for product i is greater
or equal than xik with conditional probability of at



least αik at each time period k, given history Iik of the
system. The constraint (5) denotes the total
manpower to be used in every period k of planning
horizon T. The capacity constraint (6) considers that
the summation of production levels in every period k
must not overcome the total capacity of the system .U

Solving the optimization model (1)-(7) is a hard task
due to the dimensionality and sequential stochastic
nature of the system whose states (inventory
variables) are not exactly measured. An alternative to
is a sub-optimal approach, as discussed in
(Bertesekas, 1995) and (Kleindorfer, 1978). The next
section discusses about NFC approach applied to
problem (1)-(7).

3. THE SUB-OPTIMAL PROCEDURE

Since the stochastic problem (1)-(7) is under the
hypothesis of imperfect information of states, the
inventory levels are not directly accessible for control
purposes. As a consequence, it is required primarily
to estimate the inventory levels, before applying the
NFC procedure.

3.1. Estimating the Inventory levels: The Kalman
Filter.

Firstly, it is important to introduce the vector Ik. It
contains all current, and past information related to
output yik and production uik variables. In literature, it
is known as sufficient statistic because all information
available for providing a control policy depends on it.
Thus, it can be defined as follows (Bertesekas, 1995):

Iik = {ui0, ui1, ..., ui,k-1, yi0, yi1, ..., yik} ⊃ Ii,k-1      (8)

Since the structure of the system (2)-(3) is linear and
the random variables (i.e. demand fluctuation and
error measurement variables) involved are Gaussian
distributions, the conditional probability distribution
function of the inventory (xik), given the sufficient
statistic (Ik), will be also Gaussian. As a result, all
information required to estimate the inventory levels
are reduced to conditional mean and covariance that
are generated over the time from the Kalman filter, as
follows (Astron, 1970)
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denotes respectively the conditional mean and
covariance estimates of inventory variables.

The initial conditions for (6) and (7) are given by:
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where  { }0i0i xEx̂ =  and  ( ){ }2
0i0i

0
x x̂xEV

i
−= ,

denotes respectively the mean and covariance of the
initial state xi0.

The equations (9) and (10) concentrate all available
information about the current state of the inventory in
the balance system (2), that is, the sufficient statistic
required to develop a control rule (or production
policy) to the problem (1)-(7).

In order to allow the application of NFC procedure,
the original problem is initially transformed to an
equivalent deterministic problem (Silva Filho and
Ventura., 1999). Such a transformation is shortly
discussed in following.

3.2. The Deterministic Equivalent Problem

Using the statistics of the demand fluctuation (dik)
and the error measurement (vik) variables, the
linearity of system (2)-(3), and the convexity of
criterion, the stochastic problem (1)-(7) can be
converted into an equivalent deterministic problem,
named here as Mean Value Problem (MVP). Thus,
using the conditional mean and variance estimation
(9)-(11) provided by Kalman filter, the following
transformations can be introduced:

a) on the criterion:
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b) on the inventory balance equation:

Once having fixed dik= ikd̂ , the transformation is
immediate and it is given by :

)Ix(Ex̂;d̂ûx̂x̂ k0i0iikikik1k,i =−+=+          (13)

Note that u uik ik=
�

and Var(uik)=0. It is worth
mentioning  that the plan provided by MVP will be
an open-loop policy.

c) on the chance- constraint:

Let the constraint .)Ixx(.obPr ikikikik α≥≥  From

(9), (10), and (13) is possible to handle the
probabilistic operator in (4) to obtain the following
inequality. Note that is an usual procedure provided
from the probability and statistics theory applied to
decision-making, see Papoulis (1991) and Chow
(1972) for more details:

( ) )k(xk.xx̂ i
ik

1
dikik xi α

=αΦ⋅σ+≥ −
ε         (14)

where )k(x i
α denotes a safe-stock function. It

represents a lower bound level for the inventory
variable. Note that the magnitude of the

)k(x i
α increases proportionally with period k,

standard deviation 
idσ , and with parameter αik. This

behavior can be understood as being a protective way
of dealing with possible excess of demand over the
future periods of planning horizon.

The reason for using (9) is that the production
decision variable is an essentially deterministic
variable; and, therefore, it is not responsive to the
actual fluctuation of demand. Then, the safe stock

)k(x i
α  is to be used as a barrier against stockout or

backlogging situations. Thus, the possibility of failing
to meet demand is reduced at any period.
Additionally, it is possible to adjust the size of this
safety stock. In this case, the manager can choose an
adequate value for αik ∈ [1/2, 1) which can be
interpreted as a customer satisfaction level (Silva
Filho and Ventura, 1999).

3.3. The NFC Controller

The NFC policy is computed as follows: At each
period k, the current level of inventory is observed by
the Kalman filter estimator .x i

kk This estimation is

than used as initial inventory ( i
kkk xx̂ = ) to compute

the sequential open-loop policy )û...,,û,û( *
T

*
1k

*
k +

that minimizes the modified MVP:
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Only the first element of the sequence, i.e, *
kû  is used

for managerial purpose, the remainder of elements in
the production sequence – that is, )û...,,û( *

T
*

1k+  are
completely ignored. The procedure is repeated
whenever new observation is taken.

As a result, the modified MVP must be solved T
times during the operation of the NFC. Note that such
an operation can be seen as a particular type of
rolling horizon where the planning horizon T is
preserved fixed. In this case, the revised production
level *

kû  is taken from the first element of the

production sequence )û...,,û,û( *
T

*
1k

*
k +  that is

generated by solving the modified MVP for the
following time scales [k, T], [k+1, T], ..., [T-1, T];
with k=0,1,...,T-1.

4. EXAMPLE

A simple example of a hypothetical company that
produces two different kinds of goods is considered
now. Such products are strongly influenced by the
fluctuation of demands, and the inventory level is not
perfectly known due to factors as obsolescence,
pilferage and other factors. The manager desires to
obtain a plan that minimizes the total production cost,
and at the same time, to be able to reduce the risk of
stockout. The main firm’s data are listed in table 1.
The planning horizon is one year with monthly
discrete time (i.e., T=12 months). The upper bound
work force kW  is assumed constant for each period
k (i.e., = 200 man-hour) In this example, the
inventory, production, regular and overtime man-hour
workforce costs are assumed quadratic functions; the
deterministic mathematical expression of these costs
is described by the criterion J(.), defined as follows:

Ju  = { } i
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 denotes the integration

constant.



From the above information, and using the notation
given in (6)-(7), the statistics (mean and variance)
related with the quantity ordered for each product, are
given as follows:

(i) product 1: 1dσ = 40 and the monthly mean µd1

Jan Feb Mar Apr May Jun
134 168 152 146 170 174

Jul Ago Sep Oct Nov Dec
208 180 160 170 188 208

 (ii) product 2: 2dσ = 20 and the monthly mean µd2

Jan Feb Mar Apr May Jun
200 250 150 120 200 250

Jul Ago Sep Oct Nov Dec
188 200 170 170 160 180

The customer service level is considered the same for
the two products (i.e., α1k = α2k, ∀k). In this case, the
value of  α is set equal to 0.75. The objective is to
analyze the behavior of the production process when
the goal fixed by the manager is to satisfy demand at
least 75% of time.

Table 1 Firm’s data

Data (per unity) Prod. 1 Prod. 2

Production costs (ci) $ 0,50 $ 0,60
Inventory costs (hi) $ 2,00 $ 3,00

Initial Inventory (xi0) 200 200
Productivity rate (πi) 0.8/unid. 0.2/unid.
Man hour factors (ηi) 0.5 0.5

30
21 vv =σ=σ  (error standard deviation)

rk =$5,00 (regular cost); pk=$50,00 (overtime)
40xand80x k2k1 ==

Analysis of the results: The idea is to simulate the
inventory process using the NFC procedure. The total
production cost obtained with the problem under
imperfect information and with the system being
operated by a NFC policy is compared to the same
problem but under perfect information with the
system now being operated by NFC and open-loop
policies. Note that, in open-loop operation, the
unique information about the inventory levels used to
solve the problem (15)-(20), is the initial level of
inventory measured at instant k=0. As a result, to
obtain the open-loop sequence, the modified MVP is
solved once at time over the planning horizon [0, T].
This open-loop characteristic contrasts with operation
of NFC procedure whose policy is provided by
solving problem (15)-(20) in a total of T times over
the planning horizon.

The simulation structure of the system, operating
under imperfect information of state (inventory
level), is shown in figure 1. For comparing different
policies, it is assumed the system operates under

perfect information (i.e.,yik=xik). In that case, an
open-loop policy can be applied to the system by
putting the switch “off“ for all period k>0. On the
other hand, a sub-optimal NFC policy can be applied
to the system by putting the switch “on” for all k.

off

(measure)i
kkk xx̂ =

dik
vik

yikSystem

Forecasting

Mean Value
Problem

Output

Estimator

Fig.1.  NFC and open-loop Simulation Schemes

Considering the three situation mentioned above, the
figures 2, 3 and 4 illustrates the behavior of the
inventory, production, and regular and overtime man-
hour levels required to meet the demand for the two
products. Note that for the product 1, the inventory
and production trajectories are represented by solid
lines and, for product 2, they are represented by
dotted lines.

Some conclusions obtained from comparing the three
figures were: (a) the production levels remain
relatively stable over the periods. It is a smoothing
production policy; (b) the inventory levels related to
the open loop solution (figure 4) increase over the
periods, the reason of this, is that the unique
information available about the inventory is given by
initial inventory xi0, any other measured is completely
ignored. On the other hand, the inventory trajectories
related to NFC policies (see figure 3 and 4)
decreases, in a fluctuating pattern, over the time.
Such behavior is due to the fact that NFC takes into
account measures about the inventory level in each
period k of the system operation; (c) the work force
level increases over the periods. The maximum level
of regular man-hour ( =kW 200) is reached between
period 4 and 7. Note that in these periods also occurs
a pick of overtime consume. In general, the
trajectories of regular and overtime workforce (in
man-hours) is very similar in the three cases
analyzed. This characteristic result of the smooth
behavior of production policies; and (d) comparing
the cost of applying NFC to the system under perfect

information ( imperf
NFCJ ) with the cost of applying NFC

( perf
NFCJ ) and open-loop ( perf

OLJ ) to the system under

perfect information, results that
perf
OL

imperf
NFC

perf
NFC JJJ << . The legends of figures 2-4

have the respective value of costs. Analyzed them, it
is possible to conclude that the NFC is quasi-adaptive
approach, see Bertesekas (1995) for details about the
notion of adaptivity.
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Fig. 2. Trajectories of NFC approach (imperfect

information). imperf
NFCJ = 1.230.791,00
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Fig. 3. Trajectories of NFC procedure (perfect

information). perf
NFCJ = 1.166.357,00.
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Fig. 4. Open-loop   trajectories. perf
OLJ = 1.629.036,00

5. CONCLUSION

A multi-period multi-product stochastic production
planning problem with constraints on main decision
variables and system operating under imperfect
information of state was investigated. Since finding
true optimal solution to this problem is a hard task, a
sub-optimal approach named as NFC was considered.
The selection of this approach can be explained by its
easy numerical implementation, and also because it
does not require large storage capacity of the digital
computer. The conventional mean value problem

(MVP) was reformulated to include more information
about the statistic moments of the stochastic problem.
This aspect improves the solution provided by the
NFC approach. This procedure was simulated and
compared with open-loop and NFC approaches
applied to a system operating under perfect
information. From the results, it was possible to
shown that even the system operating under imperfect
information, the NFC approach give best solution
than the one give by open-loop solution. The
feedback mechanism associated with the procedure
helps to obtain a revised production plan. Note that,
since the production process is a dynamic system, a
constant revision of the plan is a very important task
used in the management process.
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