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1. INTRODUCTION

Dynamic system identification consists in build-
ing a mathematical model from a finite amount
of data. This model must be able to reproduce
correctly (depending on its use) the behavior of
the real system. This paper focuses on the iden-
tification of linear parametric models. More pre-
cisely, the goal is to identify a closed-loop system
when the inputs are non persistently exciting of
sufficient order, and to obtain realistic confidence
intervals on the parameters.
Most traditional identification methods are based
on prediction error and rely on asymptotic-in-
data-length results to obtain confidence intervals,
results which are assumed to hold for a finite
amount of data available. This assumption can
however turn out to be dangerous, especially if
that amount is low.
It is therefore justified to look for methods that
use non-asymptotic error quantifications. In this
spirit, a Bayesian approach has been recently pro-
posed to solve this problem, within the framework
of open-loop system identification (Ninness and
Henriksen, 2003).

The Bayesian approach relies on the posterior dis-
tribution, up to a constant equal to the product of
the likelihood function and the prior distribution
of the parameters to be estimated. Prior knowl-
edge is used in order to "correct" the likelihood
function when the data records are arbitrarily
short or not enough informative.
Moreover, for many industrial production pro-
cesses, safety and production restrictions are of-
ten strong reasons for not allowing identification
experiments in open-loop. In such situations, ex-
perimental data can only be obtained under so-
called closed-loop conditions. The main difficulty
in closed-loop identification is due to the corre-
lation between the disturbances and the control
signal, induced by the loop. Furthermore, the data
collected are less informative than those stemmed
from an open-loop experiment since the goal of the
controller is to minimize the sensitivity of the sys-
tem to disturbances, thus making the identifica-
tion more complicated (Forssell and Ljung, 1999).
Several alternatives are available to cope with
this problem, broadly classified into three main
categories of approaches: direct, indirect and joint
input-output (Van den Hof, 1998).



A Bayesian technique is introduced to handle this
closed-loop system identification problem, in the
case of arbitrarily short and non-informative data
records. To our best knowledge, this issue has not
received appropriate attention so far.
This paper is organized as follows: after the pre-
liminaries, the Bayesian inference is reviewed in
section 3. Section 4 introduces the use of this
Bayesian approach to handle the closed-loop sys-
tem identification problem. The performances of
the proposed approach are illustrated with a sim-
ulation example and compared to two traditional
closed-loop identification methods in section 5.

2. PRELIMINARIES
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Figure 1. Closed-loop configuration.

Consider a linear SISO closed-loop system shown
in Figure 1. The process is denoted by G0(z) and
the controller by C(z); u(t) describes the process
input signal, y(t) the process output signal and
{e0(t)} is a sequence of independent identically
distributed (i.i.d.) random variables of variance
λ0. The external signals r1(t), r2(t) are assumed to
be uncorrelated with e0(t). For ease of notation we
also introduce the signal r(t) = r1(t) + C(q)r2(t).
With this notation, the data generating system
becomes

S :

{

y(t) = G0(q)u(t) + H0(q)e0(t),

u(t) = r(t) − C(q)y(t).
(1)

The real plant G0 is considered to satisfy G0(q) =
B0(q

−1)/A0(q
−1), while in these expressions q−1

is the delay operator, and the numerator and de-
nominator degree is n0. The m-th order controller
is assumed to be known and specified by

C(q)=
Q(q−1)

P (q−1)
=

q0 + q1q
−1 + · · · + qmq−m

1 + p1q−1 + · · · + pmq−m
, (2)

with the pair of polynomials (P,Q) assumed to be
coprime.
The following closed-loop model is considered
{

M(θ) : y(t) = G(q, θ)u(t)+H(q, θ)e(t),

with u(t) = r(t) − C(q)y(t),
(3)

where a parameterized process model is used

G : G(q, θ) =
B(q−1, θ)

A(q−1, θ)
(4)

=
b1q

−1 + · · · + bnq−n

1 + a1q−1 + · · · + anq−n
,

and the process model parameters are stacked
columnwise in the parameter vector

θ =
[

a1 · · · an b1 · · · bn

]T ∈ R
2n. (5)

The identification consists then in finding the best
(in the sense of the criterion used) model within
the set M. From equations (3), the closed-loop
output can also be written in terms of r(t) which
is uncorrelated with the noise

y(t)=
1

1+C(q)G(q, θ)
[G(q, θ)r(t)+H(q, θ)e(t)] .

(6)
Define the following closed-loop transfers

Gcl(q, θ) ,
G(q, θ)

1 + C(q)G(q, θ)
, (7)

Hcl(q, θ) ,
H(q, θ)

1 + C(q)G(q, θ)
. (8)

Equation (6) can then be rewritten as

M(θ) : y(t) = Gcl(q, θ)r(t) + Hcl(q, θ)e(t). (9)

Note that the closed-loop system is parameterized
in the plant parameter θ (like for example in the
tailor made instrumental variable method (Gilson
and Van den Hof, 2001)). Therefore, the open-loop
is directly identified without a previous closed-
loop estimation which would lead to an over-
parameterized problem.
Most of the existing methods critically rely on
the assumption of a persistently exciting of suf-
ficiently high order input signal. Therefore, in the
case where this assumption is not verified, they
provide unsatisfactory results. This paper gives an
attempt to fill this gap by using a Bayesian tech-
nique where prior knowledge is added to overcome
the lack of information in the data.

3. BAYESIAN TECHNIQUE

3.1 Bayesian inference

Although it relies on the likelihood function as
well, the Bayesian approach differs from the clas-
sical approach of the maximum likelihood in that
it allows to integrate prior knowledge.
Let us consider a statistical model where the
probability distribution p(· | θ) generating the
observations is given by a parametric model which
depends on an unknown parameter θ ∈ R

k. The
likelihood function associated with an i.i.d. sample
x = (x1, ..., xn) is given as

p(x | θ) =

n
∏

i=1

p(xi | θ). (10)

The prior knowledge on the parameter θ can be
expressed through a prior distribution p(θ). The
joint distribution of (x, θ) is given as

p(x, θ) = p(x | θ)p(θ) = p(θ | x)p(x). (11)



It yields the posterior density of θ given x

p(θ | x) =
p(x | θ)p(θ)

p(x)
, (12)

where the denominator does not depend on θ and
is written as

p(x) =

∫

p(x | θ)p(θ)dθ. (13)

Once the posterior density is obtained, the
Bayesian inference strictly saying, is over. Dif-
ferent estimators are obtained, depending on the
cost function to minimize, like for example the
maximum a posteriori estimator or the mean a
posteriori estimator.
Therefore, the Bayesian approach offers a sim-
ple, natural and flexible solution. The practical
problem is to specify the prior distribution p(θ)
taking the available information into account, to
properly characterize the likelihood p(x | θ) as
in the frequentist approach (that is the choice
and the specification of a good statistical model)
and lastly to calculate the posterior distribution
p(θ | x) with (12).
However, the numerical computation of the pos-
terior distributions is generally complex. The in-
tegral in (13) has indeed to be solved to get the
denominator of p(θ | x). If necessary, it is then
possible to compute E(θ | x), V ar(θ | x) or
P (θ ∈ A | x).
Furthermore, the parameter vector of interest is
often multidimensional: θ = (θ1, . . . , θk) ∈ R

k.
In this case, posterior marginal densities may be
obtained from

p(θj | x)=

∫

p(θ | x)dθ1...dθj−1dθj+1...dθk. (14)

The computational difficulties are therefore
mainly due to the resolution of integrals. When
dealing with simple problems, a wise choice of the
prior density allows to analytically solve them,
but the formulae obtained in this way often be-
come disheartening because of their complexity.
However, for most problems no analytical solution
is available and it is thus needed to resort to
numerical integration; the use of effective software
programs and algorithms is then compulsory.
An idea to circumvent those difficulties is to con-
struct a Markov chain which converges to an
invariant density equal to the desired posterior
density. Sampling from this chain then provides
a means for computing posteriors with respect to
this density via sample averages from the simu-
lated chain (Ninness and Henriksen, 2003).

3.2 The Metropolis-Hastings algorithm

This section summarizes a specific Markov Chain
Monte Carlo (MCMC) method: the Metropolis-
Hastings algorithms. Their principle is briefly re-
viewed here. For a more rigorous and precise treat-
ment of MCMC methods, see (Tierney, 1994) for

example.
Let π denote a distribution of interest. MCMC
methods rely on the use of an ergodic Markov
chain which admits π for stationary distribution.
Following an initial transient phase (the "burn-
in") the generated chain can be considered as
sampled from π.
A Markov chain is a sequence (Xn)n∈N of random
variables such that the conditional distribution of
Xn given Xn−1,Xn−2, ...,X0 is the same that the
one of Xn given Xn−1. Starting from an initial
value X0, the Metropolis-Hastings algorithm asso-
ciated with the target distribution π and with the
proposal distribution κ produces a Markov chain
(Xt) following these steps:

• if the current state of the chain is Xn = x,
a candidate y for the next state Xn+1 is
generated from κ;

• the candidate is then accepted with a proba-
bility α(x, y) and then Xn+1 = y; otherwise
it is rejected and the chain does not move:
Xn+1 = Xn.

where α(x, y) is the acceptance probability defined
as

α(x, y) = min

{

π(y)κ(y, x)

π(x)κ(x, y)
, 1

}

. (15)

In this algorithm, π only appears in the ra-
tio π(y)/π(x): that distribution is therefore only
needed to be known up to a constant. This is
very interesting, especially in Bayesian inference,
because the integral (13) has not to be computed,
avoiding to resort to numerical integrations.
Under soft assumptions on the proposal distribu-
tion κ (Roberts and Smith, 1994), the Metropolis-
Hastings algorithm provides a Markov chain
which admits π for stationary distribution. It
yields a measure of its "universality": if E denotes
the support of the distribution of interest π, any
distribution whose support contains E permits
to generate samples from π. This property can
however be prejudicial. An unwise choice of κ can
indeed lead to a very slow convergence: it is the
case if κ is seldom simulating points in the support
of π, for example.
The Metropolis-Hastings algorithm is quite gen-
eral, admitting many special cases, depending on
the choice of the distribution κ. In this paper,
the random walk Metropolis-Hastings algorithm
is chosen.

The random walk Metropolis-Hastings algorithm.
A natural approach for the practical construction
of a Metropolis-Hastings algorithm is to take into
account the previous simulated value to generate
the next value: this prospect is already present in
the simulated annealing and stochastic gradient
methods. Let f be a density with values in a space
E, and suppose that the distribution κ is written
as κ(x, y) = f(y − x). Then clearly the candidate



y is obtained by y = x + ε where ε is a random
disturbance with distribution f : the Markov chain
is a random walk on E. The distributions most
often considered for the disturbance are uniform
distributions on spheres centered in the origin,
normal distributions or Student distributions.
Note that the choice of an even function f per-
mits to obtain the original Metropolis algorithm
(Metropolis et al., 1953), where, as κ(x, y) =
κ(y, x), the acceptance probability (15) simplifies
to

α(x, y) = min

{

π(y)

π(x)
, 1

}

. (16)

This particular algorithm is used in the simulation
example in section 5.

4. CLOSED-LOOP IDENTIFICATION BY A
BAYESIAN TECHNIQUE

Suppose that the available data in (9) consists
of N pairs (r(t), y(t)). Let us define YN ,

(y1, ..., yN ). As the noise is an i.i.d sequence of ran-
dom variables with distribution pe, the indepen-
dence assumption allows to write the likelihood
function (10) as

p(YN | θ) =

N
∏

t=1

pe(e(t)). (17)

Hence the posterior distribution is given as

p(θ | YN ) =
p(YN | θ)p(θ)

p(YN )
(18)

=
p(θ)

p(YN )

N
∏

t=1

pe(e(t)), (19)

where p(θ) denotes the prior distribution of θ and
p(YN ) is a constant which is not to be calculated:
a Metropolis-Hastings algorithm is used to obtain
samples from the posterior distribution (18).
From (2), (4) and (6) it results that

e(t)=(AP +BQ)y(t)−BPr(t)+(1−APH)e(t),
(20)

where the q and θ notations have been omitted for
ease of reading. However, writing the likelihood
function using equation (20) yields

p(YN | θ) =

N
∏

t=1

pe

(

(AP + BQ)y(t)

− BPr(t) + (1 − APH)e(t)
)

. (21)

So the noise e(t) has to be known, which is
obviously paradoxical. A first solution to over-
come this problem is then to substitute it by
a known quantity such as the prediction error.
This proposition is connected to the maximum
likelihood technique and pseudo-linear regressions
(Johansson, 1993; Ljung, 1999). Another solution
consists in modifying the considered set of models
M so as not to be confronted with this noise

problem anymore. For the sake of place, only the
latter proposition is developed in this paper.
From (2), (4) and (6) the model to be identified
is described by

M(θ) : y(t)=
BP

AP +BQ
r(t)+

APH

AP +BQ
e(t). (22)

The set of models (9) within which the best model
is sought is changed to the following ARX model

M̄(θ) : (AP + BQ)y(t) = BPr(t) + e(t). (23)

Therefore, the context of the identification is no
longer S ∈ M but is reduced to G0 ∈ G, which is
more realistic (Ljung, 1999): this modification is
not really restrictive since generally no informa-
tion concerning the noise is available.
From equation (23) it is now possible to write

e(t) = (AP + BQ)y(t) − BPr(t). (24)

Nothing prevents us now from writing the likeli-
hood function: the noise no longer appears in the
right part of the equation (compare to (20)).
Although this method may seem simple, it pro-
vides good results if the signal-to-noise ratio
(SNR) is not too small. It is indeed logical to
obtain biased estimates as the noise becomes in-
creasingly important. This is however critical only
for a very small SNR, for which the usual methods
give erroneous results as well.

5. SIMULATION EXAMPLE

The following example is used to illustrate the per-
formances of the proposed method. The process to
be identified is described by (1), where

G0(q) =
q−1 + 0.5q−2

1 − 1.85q−1 + 0.525q−2
, (25)

C(q) =
0.35 − 0.28q−1

1 − 0.8q−1
. (26)

The parameter vector to be estimated is therefore
given by θ0 = (−1.85, 0.525, 1, 0.5). The exci-
tation signal r(t) is a simple step function made
up of only N = 10 points, switching from 1 to 0
at the 5th sample. e0(t) is a Gaussian white noise
uncorrelated with r(t). The signal-to-noise ratio is

SNR = 10 log (Pyd
/Pe) = 30dB, (27)

where Px denotes the power of the signal x and yd

is the noise-free output signal. Figure (2) shows
the excitation signal r and the response of the
system y.
Figures (3) and (4) show the results obtained by
the proposed algorithm: the histograms of the pos-
terior distributions, as well as the Markov chains
that have been generated are plotted. The prior
distributions on the parameters are Gaussian dis-
tributions centered on the true values but with
large variance (equal to 10 for each parameter).
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Figure 2. Input/output data.
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The mean a posteriori estimator yields

θ̂bay = (−1.7579 0.4310 0.9499 0.6066). (28)

The parameter estimates obtained from the tailor-
made instrumental variable (TIV) method (Gilson
and Van den Hof, 2001) are

θ̂tiv = (−2.0449 0.8274 0.9307 0.2276). (29)

A first conclusion is that the mean a posteriori
estimate seems to give more accurate results than
the TIV method for this particular case. However,
it is difficult if not impossible to drive a compari-

son between the proposed approach and the TIV
one only from this single estimation. Therefore,
the variance of the TIV estimates are computed:
θ̂tiv has been shown to be asymptotically Gaussian
distributed

√
N(θ̂tiv − θ∗)

D−→ N (0, Ptiv), (30)

with θ∗ the asymptotic estimate and Ptiv the co-
variance matrix (Gilson and Van den Hof, 2005).
Then, Figure (5) represents the posterior density
of the parameters estimated with the Bayesian
approach along with the asymptotic results (30)
used in a finite data setting in order to provide
error quantification. While these quantifications
are not strictly comparable to the posterior dis-
tribution, since they evaluate different quantities,
it would still seem interesting to compare the two
in terms of their utility for informing a user of
what system information can be extracted from
the available data (Ninness and Henriksen, 2003).
As we can see, the estimates obtained with the
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Figure 5. Posterior density of θ̂bay (histograms)
and asymptotic distribution of the TIV esti-
mates (solid line).

proposed method within the framework of very
short data length, little informative excitation sig-
nal, and a relatively low SNR are really satisfying.
The estimates are slightly biased, but the variance
is significantly lower than the one obtained by
the TIV method. Moreover, the methods that are
said to be ‘unbiased’ are actually asymptotically
unbiased : for short data length, the bias exists and
can be greater than the one obtained with the
Bayesian technique, especially if the assumption
of a persistently exciting of sufficiently high order
input signal is not fulfilled; see Figure (5).
Finally, to give an idea of the conditions under
which this identification was carried out, here is
given the error message obtained while identifying
this system via the two-stage method (Van den
Hof and Schrama, 1993), which, when using the
MATLAB oe function, delivered "There are too

many parameters to estimate for this amount of

data".



Another experiment is performed in order to show
the performance of the proposed method even in
the more realistic case of non accurate a priori
values. The new prior distributions are therefore
no longer centered on the true values but on
deliberately erroneous ones. An error normally
distributed with zero mean and unit variance is
added to the parameter real values to compute
the following erroneous a priori parameters

θprior = (−2.2826 − 1.1406 1.1253 0.7877). (31)

The prior distributions are then Gaussian distri-
butions centered on θprior (31) with variance equal
to 10 for each of them. Then, the mean a posteriori
estimator and the TIV method yield

θ̂bay = (−1.8077 0.4667 1.0596 0.4886) (32)

θ̂tiv = (−2.0518 0.8959 0.9246 0.0090). (33)

An immediate conclusion is that the results are
still satisfying and better than those obtained
from the TIV method, even with a sometimes size-
able error on the mean of the prior distributions.
Moreover, as previously, the posterior density of
θ̂bay and the asymptotic results stemmed from
the TIV method are represented in Figure 6.
In conclusion, it can be seen that the proposed
method gives accurate results even in the case of
an erroneous prior knowledge.
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Figure 6. Posterior density of θ̂bay (histograms)
and asymptotic distribution of the TIV esti-
mates (solid line). Case where the prior dis-
tributions are not centered in the true values.

6. CONCLUSION AND PROSPECTS

A first attempt to use Bayesian techniques for
identifying closed-loop systems has been pro-
posed. In the case of a non persistently exciting of
sufficiently high order input signal, existing meth-
ods hardly provide satisfying results (if not totally
erroneous) while the proposed Bayesian technique
offers an interesting and accurate solution. More-
over, contrary to the traditional methods, the
proposed technique provides reliable confidence

intervals even with a very short data record.
Lastly, if the signals are highly noise-corrupted,
the behavior of the classical methods is again
unsatisfactory as these ones mainly rely on the
information contained in the input/output data
without taking into account a potential a priori
information.
On the contrary, the suggested method uses prior
knowledge to overcome the problem induced by
the insufficiently rich data records. This work is a
preliminary proposition and many issues have to
be investigated. For example, further work would
be to obtain realistic prior distributions by ex-
ploiting for example the stability of the system,
the gain and the phase margins; it is also possible
to lay down a softness constraint on the frequency
response, etc.
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