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Abstract: This paper is concerned with the reduction of the number of parameters
of LPV and quasi LPV models for the synthesis of LPV gain scheduling controllers.
The number of parameters is reduced by the principal component analysis of
typical scheduling trajectories. This method enables a systematic trade-off between
the number of reduced parameters and the desired accuracy. The approach
is illustrated with a quasi LPV model of an arm driven inverted pendulum
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1. INTRODUCTION

In recent years, LMI-based design of gain-scheduled
controllers for linear parameter-varying (LPV)
systems has been developed into an efficient tool
for the control of nonlinear MIMO systems. An
LPV system is a linear system whose state space
data depend explicitly on a time-varying exter-
nal parameter vector θ(t). If parameters in θ(t)
depend on measured system outputs, the system
is called a quasi LPV system. The attractiveness
of LPV systems lies in the fact that they allow
to extend the use of well-known linear optimal
control tools to nonlinear controller design. How-
ever, even though there exists a variety of publi-
cations on controller synthesis, see e.g. (Apkarian
et al., 1996), (Apkarian and Tuan, 2000), (Rugh
and Shamma, 2000) and references therein, there
are significantly fewer results on applications,
among those (Kajiwara et al., 1999), (Dettori and
Scherer, 2001), (Bruzelius et al., 2002), (Yu et
al., 2002). One reason for this is the fact that with
an increasing number of parameters, the design
problem quickly becomes intractable; another rea-

son is the conservatism due to overbounding the
parameter range of the plant, when modelled as
LPV system.

Number of parameters: For the standard H∞ LPV
gain scheduling approach with polytopic models
(Apkarian et al., 1996), the number N of Linear
Matrix Inequalities (LMIs) to be solved depends
exponentially on the number l of parameters ac-
cording to

N = 2l+1 + 1 ,

so that even simple problems become untractable
if l exceeds a number of 3∼4. For less conservative
approaches like parameterized LMIs (Apkarian
and Tuan, 2000), the computational burden is
even higher. Approaches that deal with the design
of LPV models with few parameters (Kajiwara
et al., 1999), (Yu et al., 2002), use subsidiary
controllers, neglect physical feedbacks or set terms
in the LPV models to zero or fixed values to
reduce the complexity. Although these procedures
are motivated by the control task and guided
experience, they appear not to be very intuitive.



Conservatism due to overbounding: For quasi-
LPV systems usually the parameter range is a
superset of the region that is spanned by the
real plant parameters, if the same scheduling out-
puts appear in more than one parameter func-
tion. Therefore, the LPV system includes behav-
ior, that cannot be displayed by the real plant,
resulting in conservatism. One way to reduce this
conservatism, is to determine operational trajec-
tories of the real plant and to ’reshape’ the hyper-
box representing the parameter range, such that
it matches the given operating points as closely
as possible (Azuma et al., 2000), (Bruzelius et
al., 2002). For polytopic LPV models, this method
often results in an increasing number of vertices
of the polytope and with that, in computational
burden. In the proposed approach, the operation
trajectories are used to reduce the conservatism
in modelling, while using these data to reduce the
number of parameters at the same time. This is
done by principal components analysis (PCA) of
the data.
The paper is organized as follows. The next sec-
tion defines the problem, followed by the presen-
tation of the parameter reduction in Section 3.
Section 4 presents an inverted pendulum as an
example. The LPV model is derived from the
nonlinear model and the number of parameters
is then reduced. In section 4.3, the quality of the
approximated model is examined in detail.

2. PROBLEM FORMULATION

Suppose we are given the quasi-LPV system

ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t) ,
y(t) = C(θ(t))x(t) + D(θ(t))u(t) ,

(1)

where θ(t) ∈ IRl represents a time-varying param-
eter vector, and the mappings A(.), B(.), C(.)
and D(.) are continuous functions of θ. The pa-
rameter vector θ(t) depends on a vector of mea-
sured signals ys(t) ∈ IRk, referred to as scheduling
outputs, according to

θ(t) = f(ys(t)) , (2)

where f : IRk → IRl is a continuous mapping.
Here it is assumed that ys(t) is a subvector of
the plant measurement vector y(t). The problem
considered in this section is the following. Find a
mapping g : IRk → IRm such that m < l, and

φ(t) = g(ys(t)) , (3)

yields a model

ẋ(t) = Â(φ(t))x(t) + B̂(φ(t))u(t) ,

y(t) = Ĉ(φ(t))x(t) + D̂(φ(t))u(t) ,
(4)

that provides a satisfactory approximation of the
system (1). Moreover, find the smallest integer m
for which a satisfactory approximation is possible.

3. PARAMETER REDUCTION

The first step is to generate ’typical’ output tra-
jectories by simulation or by experiments. The
output trajectories should roughly span the ex-
pected range of operation of the controlled plant.
This can be the entire operating region or can
be used to restrict the possible operating region
considerably, as illustrated in the example below.
With output data sampled at times t = kT, k =
0, · · · , N , N À l one obtains the data matrix

Θ = [θ(0) θ(T ) . . . θ(NT )]
= [f(ys(0)) f(ys(T )) . . . f(ys(NT ))] ,

(5)

whose ith row Θi represents the trajectory of
parameter θi. The rows Θi are normalized by an
operation N to achieve zero mean data with unity
deviation:

Θn
i = Ni(Θi) = (Θi −mi)/ci , (6)

Θi = N−1
i (Θn

i ) = ciΘn
i + mi , (7)

s.t.
N∑

k=0

Θn
i = 0, σ(Θn

i ) = 1 , (8)

resulting in a normalized data matrix Θn

Θn = N (Θ), Θ = N−1(Θn) , (9)

where N and N−1 indicate the row-wise normal-
ization and re-normalization, respectively. Now,
one applies the Principal Components Analysis
(PCA), a standard tool in probability and statis-
tics (Jackson, 1991), to the data (9). Introduce a
singular value decomposition of Θn

Θn = [Us Un]
[
Σs 0 0
0 Σn 0

] [
V T

s

V T
n

]
,

and assume that Us, Σs and Vs correspond to the
m significant singular values, where m < l, so that

Θ̂n = UsΣsV
T
s = UsΦ ≈ Θn , (10)

is a reasonable approximation of the given data.
Note that the rows of Φ = ΣsV

T
s represent the

principal components of the normalized data ma-
trix Θn, while the matrix Us ∈ IRl×m represents
a basis of the significant column space of Θn and
can be used to obtain a mapping from the data
onto the principal components:

Φ = UT
s Θ̂n . (11)

An interesting feature of this approach is the
possibility to adjust the accuracy of the model
against the number of principal components and



with that, the number of parameters.
Up to now, the approximation has been applied
to data only. To extend the use of PCA from data
approximation to model approximation, the PC of
Θn need to be functionally related to the schedul-
ing outputs ys(t). To do so, the transformation
matrix in equations (10), (11) and the normal-
ization are applied to (2). Firstly, the parameters
in (2) are normalized using the values (mi, ci)
from (6). With that, the transformation matrix
Us relates normalized parameter vector θn(t) to
the desired mapping φ(t) in (3) by

θn
i (t) = (fi(ys(t))−mi)/ci , (12)

φ(t) = UT
s θn(t) = UT

s N (f(ys(t))). (13)

Thus, the functions gi in (3) can be derived as



g1(ys(t))
...

gm(ys(t))


 = UT

s




(f1(ys(t))−m1)/c1

...
(fl(ys(t))−ml)/cl


 .

The approximate mappings Â(.), B̂(.), Ĉ(.), D̂(.)
in (4) are related to (1) by

[
Â(φ(t)) B̂(φ(t))
Ĉ(φ(t)) D̂(φ(t))

]
=

[
A(θ̂(t)) B(θ̂(t))
C(θ̂(t)) D(θ̂(t))

]
(14)

where

θ̂(t) =N−1(Usφ(t)) (15)

=N−1(UsU
T
s N (θ(t))) . (16)

At any given time, (13) can be used to compute
the reduced parameter vector φ(t), while (14)
together with (15) can be used to generate the
approximate LPV model. The method can also be
applied to LPV systems with external parameters,
when the parameter data Θ are measured or
simulated directly. To summarize, the parameter
reduction is executed in the following steps:

1. Determine parameter trajectories Θi from
measurements or simulations. For quasi LPV
systems use output data ys(k) and (5).

2. Compute normalization terms ci, mi and
principal components of the parameter data.

3. Choose the number of significant principal
components, obtain Us.

4. Use transformation Us and normalization
terms of step 3 to apply the PCA to the
mapping f in (2).

To illustrate the approach, the parameter reduc-
tion is applied to an arm driven inverted pendu-
lum in the following section.

4. EXAMPLE: INVERTED PENDULUM

In (Kajiwara et al., 1999) the authors investigate
the benefit of LPV gain scheduling compared to

robust control by applying different techniques to
an arm driven inverted pendulum, as shown in
Figure 1.
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Fig. 1. Arm driven inverted pendulum

The control task is to stabilize the upper link
(pendulum) in an upright position, while following
given trajectories with the lower link (arm), using
the torque τ as control input and measuring q =
[ q1 q2 ]T .

4.1 Derivation of the LPV Model

The equation of motion is

M(q) q̈ + C(q, q̇) + g(q) = τ with (17)

M =
(

a b cos(q1 − q2)
b cos(q1 − q2) c

)
(18)

g =
(−d sin(q1)
−e sin(q2)

)
(19)

C =
(

b sin(q1 − q2)q̇2
2 + R1q̇1

−b sin(q1 − q2)q̇2
1 −R2q̇1 + R2q̇2

)
(20)

where

a = m1(l2c1 + l21/12) + m2l
2
1 b = m2l1lc2

c = m2(l2c2 + l22/12) d = g(m1lc1 + m2l1)
e = gm2lc2

and with li, lci describing the length of the links
and the center of gravity respectively, mi and Ri

describing the masses and friction in the joints
for (i = 1, 2) and g being the gravity constant. A
nonlinear state space model can be written (Yu et
al., 2002) as

ẋ = F (x)x + G(x)τ ,with x = [ q1 q2 q̇1 q̇2 ]T ,
(21)

where

F (x) =
[

[O2×2 I2]x
−M−1(x)[C(x) + g(x)]

]
, (22)

G(x) =
[

O2×1

M−1(x)

]
, (23)

with the zero matrix O and the identity matrix
I. Thus, an LPV model (1) that describes the
nonlinear system completely is given by



A(θ) =




0 0 1 0
0 0 0 1

cdθ3 −beθ4 θ5 −bθ6

−bdθ7 aeθ8 θ9 θ10


 , (24)

B(θ) = [ 0 0 cθ1 − bθ2 ]T , C = I, D = O, (25)

h = ac− b2 cos2∆, θ1 = 1/h, θ2 = cos∆ /h ,

θ3 = si(q1)/h, θ4 = cos∆ si(q2)/h ,

θ5 = (−cR1 − b2 sin∆ cos∆ q̇1 − bR2 cos∆)/h ,

θ6 = (c sin∆ q̇2 + R2 cos∆)/h, θ7 = cos∆ si(q1)/h ,

θ8 = si(q2)/h, θ10 = (b2 sin∆ cos∆ q̇2 −R2a)/h ,

θ9 = (R1b cos∆ +ab sin∆ q̇1 + R2a)/h,

with cos∆ = cos(q1 − q2), sin∆ = sin(q1 − q2)
and si(qi) = sin(qi)/qi. This LPV model has 10
parameters depending on qi(t) and q̇i(t).

4.2 Parameter Reduction

To determine the data of the scheduling out-
puts (ys = x), one needs to run simulations. Be-
cause the plant is unstable, local H∞ loop-shaping
controllers have been designed for several local
models linearized at operating points q2 = 0o,
q1 ∈ {−45o; −30o; 0o; 30o; 45o}. The resulting
output trajectories are denoted by ys,q1

. Figure
2 displays some results. The states vary in the
following intervals:

q1 ∈ [−55 55 ], q2 ∈ [−1.3 1.3 ],
q̇1 ∈ [−27 27 ], q̇2 ∈ [−13 13 ] . (26)

The state trajectories have been appended to the
scheduling output ys(k) = [ys,−45(k) · · · ys,45(k)].
The PCA of the resulting normalized parameter
matrix Θn leads to the principal components Φ.
Figure 3 shows the fractions of the total variance
of the data represented by the single PC. One
can see that more than 90% of the data can
be represented by the first principal component.
With that, 9 of the 10 PC are neglected, leading
to m=1.

4.3 Validation of the Reduced Model

In this section, the original model (1) is compared
with the parameter reduced model (4). Firstly, the
quality of the parameter approximation is exam-
ined. Figure 4 shows the parameter trajectories
θ(t) and the approximation θ̂(t) for the parame-
ters θ1, θ5 and θ6, evaluated with the scheduling
outputs at operating points q1 = 0o and q1 = 45o.
These parameters have been chosen because they
are typical for the set of all parameter trajectories.
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Fig. 2. Scheduling outputs, ys,0 (solid), ys,±30

(dashed), ys,±45 (dash-dotted)
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One can see clearly, that the reduced model with
only m=1 parameter φ approximates the parame-
ters in θ quite well. Because small deviations in the
elements of the system matrices can result in con-
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Fig. 5. Approximation of the eigenvalues. Origi-
nal: ys,0 (solid), ys,45 (dash-dot), approxima-
tions: ys,0 (dashed), ys,45 (dotted)

siderable variations of the system, the parameter-
ized models are compared in the following. First,
the eigenvalues of the parameterized state matri-
ces λi(A(θ(ys,q1

))) are compared with those of
the approximated state matrices λi(A(θ̂(ys,q1

)))
at operating points q1 = 0o and q1 = 45o; they are
shown in Figure 5. At both operating points the
eigenvalues match quite well. Finally, the input-
to-state gain of the parameterized models

ks = [ ks,1 ks,2 ks,3 ks,4 ]T = −A(θ)−1B(θ)

k̂s = [ k̂s,1 k̂s,2 k̂s,3 k̂s,4 ]T = −A(θ̂)−1B(θ̂)

is examined. Because ks,3 = ks,4 = k̂s,3 = k̂s,4 =0,
only the static gains of the angles are shown in
Figure 6 for the scheduling outputs ys,0 and ys,45.
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Fig. 6. Approximation of the static gain. Orig-
inal: ys,0 (solid), ys,45 (dash-dot), Approxi-
mations: ys,0 (dashed), ys,45 (dotted)

While the static gain from input to the angle q1

is perfectly matched, there are deviations in the

other channel. The original model has zero static
gain ks,2 = ks,2 =0, but this is not displayed by
the reduced model. Finally, it needs to be checked,
whether the reduced model can approximate op-
erating points that are not part of the trajectories
of the scheduling outputs. To do so, the velocities
are set to zero q̇1 = q̇2 = 0, and a grid of angles
has been chosen between their extreme values. For
every operating point, the parameter θi(q) and its
approximation is calculated. Figure 7 shows the
relative errors erel(θi) for the parameter with the
lowest and the highest mean relative errors

erel(θi) =
| θi(q)− θ̂i(q) |

θi(q)
(27)
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Fig. 7. Relative errors of approximation for θ1
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The highest relative error in the approximation of
all parameters is 3.5%. The average relative error
about all operating points and all parameters is
about 0.7%. Thus, the approximations for the
equilibria are satisfactory.
Finally, it is shown how the quality of the pa-
rameter approximation reflects the quality of the
input/output behavior of the approximated plant.
Because it is difficult to compare the input/output
behavior for the unstable upwards position of the
pendulum, the procedure of parameter reduction
has been repeated for the stable downwards posi-
tion of arm and pendulum and for excitation with
sinusoidal signals. The states operate in the range

q1 ∈ [ 90 274 ], q2 ∈ [ 89 260 ],
q̇1 ∈ [−507 778 ], q̇2 ∈ [−635 797 ] .



The operating range is greater than in the upright
case (26), therefore one needs approximately 5 pa-
rameter to display 95% of the system’s behavior,
see Figure 8.
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This demonstrates, that the reduction depends
strongly on the chosen parameter range. Figure
9 shows the state trajectories for an open-loop
simulation and an excitation τ = 0.1 sin(3t). The
model with seven parameters approximates the
system quite well, while five parameters appear
to be required for acceptable performance.
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5. CONCLUSION AND OUTLOOK

This paper presents a method for the reduction of
the number of parameters for LPV models, that

allows a systematic trade-off between model accu-
racy and the number of parameters. The parame-
ter reduced model can be used to design polytopic
LPV representations with less overbounding. The
main idea lies in the application of Principal Com-
ponents Analysis, applied along typical parameter
trajectories. The example of an inverted pendu-
lum illustrates that it is possible to neglect nine
of ten parameters while still approximating with
reasonable accuracy. It needs to be further inves-
tigated, however, how the choice of the scheduling
outputs influences the approximation and how the
quality of the parameter approximation affects the
quality of the overall model behavior.
Moreover, utilization of this approach for the de-
sign of gain-scheduling state feedback and output
feedback controllers is currently under investiga-
tion, and the applicability of parameter reduction
for controller synthesis is being examined.
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