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Abstract: The paper considers period overruns in control tasks with variations in execution
time (or response time). A simple model is used, where the input and output operations are
assumed to be time-triggered, and the execution-time distribution of the task is assumed
to be known. Three overrun strategies, called Abort, Skip, and Queue, are modeled as
discrete-time jump linear systems and are analyzed with regard to control performance.
The analysis is exemplified on an integrator process. It is argued that the Skip strategy has
good performance, is simple to analyze, and is easy to implement in real-time operating
systems. Some simple extensions are also considered. Copyright c©2005 IFAC
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1. INTRODUCTION

In embedded control systems, the computational re-
sources are limited and must be used as efficiently
as possible. In such systems, it may not always be
feasible to use high sampling rates and to base the real-
time system design on worst-case execution times.

In this paper, we study controllers that experience vari-
ations in their execution times from sample to sample.
If the control task has not finished its execution by the
end of the sampling period, an overrun is said to have
occurred. The overrun can be viewed as an exception
that must be handled by the real-time operating system
and by the controller. The variations in execution time
may stem from the control application itself, from the
real-time system, or from the computing hardware.
Examples in the first category include discrete logic
and data-dependencies in the control algorithm. In
the second category, we find preemption from higher-
priority tasks and interrupts 1. The third category in-
cludes hardware effects such as cache misses.

1 The total execution time, including preemption from higher-
priority tasks, is usually referred to as the response time of the task.

At the heart of the problem is a trade-off between the
sampling period and the probability and consequence
of overruns. Using conventional notation from real-
time systems, the CPU utilization U of a task is given
by

U =
C
T

(1)

where C is the worst-case execution time of the task,
and T is the task period. It is seen that, for a given
value of U , a large enough T must be chosen to
accommodate the largest possible execution time. It
is well known that an overly long sampling period
leads to degraded control performance. Hence, it can
be tempting to choose a smaller T than what is dictated
by (1). The penalty that must be payed is that of
possible execution overruns. If the performance loss
due to the overruns is smaller than the performance
gain due to the shorter sampling period, then such
a design could be considered to be “better” than a
classical worst-case design.

The influence of the sampling interval on the control
performance is relatively easy to understand and to
compute. The consequence of execution overruns is
considerably more difficult to predict. The result de-



pends on a large number of factors, including how the
I/O is performed, the basic scheduling algorithm used
in the operating system, the specific overrun handling
method used, the execution-time characteristics of the
control task, the controller and plant dynamics, and
whether or not the controller can compensate for over-
runs. Hence, it may not be possible to devise an over-
run handling method that is “the best” for all control
applications.

To allow for some control analysis, in this paper
we will consider a very simple model of a real-time
control system. The model is based on the seminal
paper on real-time scheduling theory, (Liu and Lay-
land, 1973). The input and output operations of the
controller are assumed to be time-triggered and syn-
chronized such that the reading and writing of mea-
surement and control signals occur at the same time.
Hence, assuming non-zero computation times, there
will be a computational delay of at least one sample
in the feedback loop. Furthermore, it is assumed that
the execution time of the control algorithm in suc-
cessive periods is independent and can be described
by a stochastic variable with a known distribution.
These assumptions will allow us to model the real-
time control system as a jump linear system. The per-
formance of the system (as measured by a quadratic
cost function) can then be evaluated for different over-
run handling strategies.

1.1 Related work

The study of execution overruns is closely related to
the analysis of control systems with random delays.
Systems with random sampling and random delays
are modeled as jump linear systems in (Krasovskii
and Lidskii, 1961). Discrete-time jump linear sys-
tems are treated in e.g. (Ji et al., 1991). Control sys-
tems with random delays and skips are also treated
in (Davidson, 1973). Linear-quadratic analysis and
control of systems with random network delays are
studied in (Nilsson et al., 1998). Jitterbug (Lincoln
and Cervin, 2002) is a MATLAB-based toolbox that
allows the evaluation of a quadratic cost function for a
control system with aperiodic sampling, skips, etc.

Skips and overruns have been studied quite exten-
sively in the real-time literature. Scheduling of sys-
tems that allow skips is treated in (Koren and Shasha,
1995) and (Ramanathan, 1997). The latter paper con-
siders scheduling that guarantees that at least k out of
n instantiations will execute. A slightly different moti-
vation for skipping samples is presented in (Caccamo
and Buttazzo, 1997). Here the main objective is to use
the obtained execution time to enhance the responsive-
ness of aperiodic tasks.

The constant bandwidth server (Abeni and Buttazzo,
1998) is a scheduling mechanisms for soft and/or ape-
riodic tasks. When a task has an overrun, the dead-
line is postponed by a period so that the schedula-
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Fig. 1. The system model assumed in this paper. The
I/O is time-triggered with the period T .

bility of other tasks are not jeopardized. A variant of
the constant-bandwidth server specifically designed to
handle overruns in real-time control systems is pre-
sented in (Caccamo et al., 2002). The proposed server,
called CBShd, differs from the original CBS by post-
poning the deadline only by the amount needed to
complete the job. In this way, the task can be sched-
uled more efficiently and finish earlier.

1.2 Outline

In Section 2, the system model is given, and three dif-
ferent overrun handling strategies are suggested. The
strategies are modeled as Markov chains, allowing the
closed-loop system to be described as a jump linear
system. In Section 3, the analysis is exemplified on an
integrator process, and in Section 4, some extensions
and relationships to real-time scheduling algorithms
are discussed. Finally, Section 5 contains the conclu-
sions.

2. OVERRUN STRATEGIES

2.1 System model and performance evaluation

The real-time control system assumed in this paper
is shown in Fig. 1. The plant and the control com-
puter are interfaced by a time-triggered I/O unit that
takes measurement samples with from the plant and
forwards control signals (using zero-order hold) from
the controller, both with the period T .

Each measurement sample generates a job (task in-
stance) in the computer. If the execution time of the
job is larger than the sampling period, an overrun
occurs and the control signal will not be updated in
the next sampling interval.

The plant is described by a linear continuous-time
system P(s), and the controller is described by a linear
discrete-time system, C(z). The controller is typically
designed taking the one-sample delay in the feedback
path into account. Both systems are assumed to be
disturbed by white noise processes.

The execution time (or response time) of the control
algorithm is described by a probability density func-
tion fc(x). An example of an execution-time distribu-
tion is shown in Fig. 2. Here, the execution time varies
between a common, lower, nominal value cnom and an
upper, maximum value cmax. This could model a task



which experiences occasional cache misses. In a real
system, the execution times from sample to sample are
typically not independent. Another modeling problem
is that it can be very hard to find the maximum execu-
tion time.

Below, we describe three different overrun handling
strategies; Abort, Skip, and Queue; and show how they
can be modeled using Markov chains. Also, the imple-
mentation of the strategies in the real-time system are
discussed.

In our models, a Markov chain makes two transitions
every period T . Each transition takes T/2 seconds,
during which the continuous-time dynamics of the
plant evolve. When a node is reached, a discrete-
time system (the I/O or the controller) associated with
the node may be updated. Sampling the plant with
the interval T/2, the closed-loop system can then be
written as a discrete-time jump linear system,

x(k + 1) = Φnx(k) + Γnv(k) (2)

where the state vector x collects the plant, controller,
and I/O states, v is a discrete-time white noise process,
and the transition matrix Φn and the input matrix Γn

depend on the current Markov state n.

Given a Markov chain, it is straightforward to compute
the stationary covariance of x by iteration and to
evaluate a quadratic cost function for the system.
For the calculations in this paper, we have used the
Jitterbug toolbox (Lincoln and Cervin, 2002).

2.2 The Abort strategy

From a real-time perspective, a period overrun can be
viewed as a missed deadline. If the real-time operat-
ing system supports the monitoring of deadlines, an
exception can be generated when the overrun occurs,
killing the job. This is referred to as the Abort strategy.
An illustration of the strategy is given in Figure 3.
Aborting the current job means that no new control
signal will be produced this period, but, at the same
time, the next job will have a better chance of finishing
before its deadline.

The Abort strategy can be modeled by a simple
Markov chain as shown in Fig. 4. The I/O system is
updated at the beginning of each period. Then, with
a probability of p =

∫ T
0 fc(x)dx, the job will finish

before the period, causing the controller C to be exe-
cuted. If the controller has executed, the control signal
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Fig. 2. Example of a probability density function
describing the execution-time distribution of a
control task.
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Fig. 4. Markov chain for the Abort strategy.

t := StartTime() + T;
loop
select

delay until t;
then abort

Read_input();
Compute_control();
Write_output();

end
t := t + T;
delay until t;

end

Listing 1. Pseudo-code for implementation of the
Abort strategy.

will be delivered to the plant by the I/O at the begin-
ning of the next period.

Although simple to model, the Abort strategy may
be difficult to implement. Some languages, such as
Ada (e.g., (Burns and Wellings, 2001)) and Real-
Time Java (RTSJ, (Bollella et al., 2000)) have explicit
support for timeouts and asynchronous transfer of
control (program flow). Listing 1 shows the pseudo-
code for the Abort strategy (in an Ada-like language).

Generally, however, operating systems do not support
asynchronous transfer. One alternative is to insert ex-
tra checkpoints in the code. Here, the clock can be
read and it can be determined whether the task is
late, causing a branch to the end of the loop. Another
possibility is to use a timer and to lower the priority
(or equivalent) of the late task, letting it run in the
background until it has finished. Meanwhile, a new
task, taken from a task pool, is used to execute the next
job. Such a scheme introduces additional overhead.
Care must also be taken such that the task data is in
a consistent state throughout.

2.3 The Skip strategy

In the Skip strategy, subsequent jobs and samples
are skipped as long as the current instance has not
completed. The strategy is illustrated in Figure 3.
Contrasted to the Abort method, the Skip strategy
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Fig. 5. The Skip strategy. When the first job overruns,
the second job is skipped.
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Fig. 6. Markov chain for the Skip strategy, assuming
cmax ≤ 2T .

makes certain that new control signals are eventually
delivered to the plant. If the overrun covers several
periods, many jobs may have to be skipped, however.

The size of the associated Markov chain depends on
the ratio of the maximum execution time cmax and the
period T . The chain for the case cmax ≤ 2T is shown in
Fig. 6. With a probability p =

∫ T
0 fc(x)dx, the output

will be delayed only one period, and in the other case
the output will be delayed two periods. For longer
maximum execution times, more branches must be
added to the chain.

The Skip strategy is very simple to implement in
most real-time systems. The pseudo-code is given
in Listing 2. The task must keep track of its own
time-base, i.e., when it was first released. When a
job finishes, it can read the system clock to find out
whether it is late or not. It can then set a flag to indicate
to the next job whether it should execute the control
algorithm.

2.4 The Queue strategy

The Queue strategy can be said to be the default
implementation in systems where overruns are not
considered. The strategy is illustrated in Figure 7.
When an overrun occurs, the following job is queued
and can start once the first instance completes.

Allowing the first job to complete, the second job will
be delayed, introducing extra input-output latency.
Also, since the second job is released late, it is less
likely to complete before the third job is released.

t := TimeBase() + T;
late := false;
loop
if not late then

Read_input();
Compute_control();
Write_output();

end;
t := t + T;
if Clock() < t

delay until t;
late = false;

else
late = true;

end
end loop

Listing 2. Pseudo-code for implementation of the Skip
strategy.
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Fig. 7. The Queue strategy. The second job is queued
and can start once the first job completes.

Note that, if several long execution times occur in a
row, a long queue of jobs may build up in the RTOS.
This can lead to very poor control performance. An
alternative is to queue only the most recent job. This
modified strategy will be referred to as Queue(1).

Modeling the Queue strategy as a Markov chain is
more difficult than the other cases. If an arbitrary num-
ber of jobs may be queued, the chain will be infinite
and must be truncated at some point. Furthermore,
the state of the task, i.e., the amount of completed
execution time of the job, must be stored between
periods. Since this state is continuous in time, it must
be discretized.

A Markov chain for the Queue(1) strategy for the
case cmax ≤ 2T is shown in Fig. 8. The left-most
node corresponds to the case where there is no queue
in the system and the job finishes before the next
period. Each branch in the right-hand side corresponds
to an overrun of some length kδ , where δ is the
chosen discretization interval for the queue length.
Since the I/O unit always executes periodically, it may
also be necessary to store old inputs (representing
an input read by the control task in the previous
period). For this purpose, in the model, the I/O delivers
two samples; the current and the previous one. The
execution of C1 represents the reading of the latest
sample, while the execution of C2 represents reading
the old sample.

The implementation of the plain Queue strategy is
trivial in most systems, since the overrun exceptions
are not really handled. The pseudo-code is given in
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Fig. 8. Markov chain for the Queue(1) strategy, assum-
ing cmax ≤ 2T .

t := TimeBase() + T;
loop
Read_input();
Compute_control();
Write_output();
t := t + T;
delay until t;

end loop

Listing 3. Pseudo-code for implementation of the
Queue strategy.

Listing 3. The modified Queue(1) strategy may be
implemented using a technique similar to Listing 2.

3. EXAMPLE

The analysis is exemplified on an integrator process,

P(s) =
1
s

which is assumed to be disturbed by a white noise
process with unit incremental variance. The controller
is designed to minimize the stationary cost function

J = lim
t→∞

1
t

∫ t

0
y2(τ)dτ

i.e., the controller is a minimum-variance controller
(Åström and Wittenmark, 1997). The sampling inter-
val T and a computational delay of T is assumed in
the design.

An execution-time distribution is assumed according
to Figure 2, where p = 0.8, cnom = 1, and cmax = 2.
The performance for each strategy is computed for
different sampling intervals between T = 1 and T = 2.
Note that the case T = 2 corresponds to a worst-case
design, where no overruns are possible. In this case,
the cost can be computed to be

√
3/3 + 3. For the

Queue strategy, the queue length was discretized with
step size of δ = T/10. The results are displayed in
Figure 9, where the cost J is plotted as a function of
the sampling period T .
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Fig. 9. Comparison of costs in different overrun han-
dling strategies.

The cost of the Abort strategy initially decreases as
the period is decreased from cmax. This is due to the
shorter sampling interval used. As the period becomes
shorter, however, the cost increases rapidly due to the
larger number of missed outputs. The minimum cost
of J = 3.4 is obtained for T = 1.6.

For the Skip strategy, the results are reversed—the
cost initially increases due to occasional skips, but
then decreases again as the period becomes shorter.
The minimum cost J = 3.2 is obtained for the shortest
sampling interval, T = 1.

For the Queue strategy, the cost increases monoton-
ically with shorter sampling periods. The increase is
due to the successive long delays caused by the queu-
ing of jobs. The minimum cost, J = 3.6, is obtained
for the longest sampling period, T = 2.

In this example, the Skip strategy has the best overall
performance, assuming that the period can be chosen
freely. In some cases, however, the sampling period
may be dictated by the application (consider for in-
stance a camera delivering images at a fixed rate), and
then the Abort strategy may give better performance.
For time-triggered inputs and outputs, the queue strat-
egy does not seem to work very well. This is due to the
domino effect that causes repeated missed outputs.

4. EXTENSIONS

The analysis presented in this paper are based on
two simplifying assumptions: that the execution times
are independent between periods, and that the I/O is
time-triggered. Removing either of these assumptions
makes the analysis much harder. Having execution-
time dependencies between jobs requires the addition
of another dimension to the Markov chains. Removing
the I/O points, one must consider both sampling jitter
and output jitter in the analysis, and these depend on
the scheduling policy used, etc.

One case that is easy to model, however, is a model
that could be called “Queue–Shift”. The idea is the



t := TimeBase() + T;
loop
Read_input();
Compute_control();
Write_output();
if Clock() < t

delay until t;
else

t := Clock() + T;
end

end loop

Listing 4. Pseudo-code for implementation of the
Queue–Shift strategy.
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Fig. 10. Comparison of the Skip and Queue–Shift
strategies.

following. When a job overruns, the following I/O op-
erations and jobs are shifted by the same amount as the
overrun. This of course requires that the I/O unit can
be reprogrammed on the fly. The task implementation
for this strategy is simple, see Listing. 4.

Due to the minimization of delays in the case of over-
runs, the Queue–Shift strategy is expected to outper-
form the other strategies. Fig. 10 compares the cost to
the Skip strategy. The Queue–Shift strategy performs
better throughout (except, of course, for T = 2.)

It is also natural to consider control algorithms that
compensate for overruns. For instance, in the case of
state feedback from an observer, the Kalman filter can
be modified so that it considers the number of samples
the previous control signal has been active.

5. CONCLUSION

The problem of overruns due to varying control task
execution times has been investigated. Theoretical
analysis of simple models has shown that the perfor-
mance can be improved by choosing shorter sampling
periods that what is dictated by worst-case considera-
tions. Of the three basic overrun methods investigated
in the example, the Skip strategy seems to be the most
robust one. It is also very simple to implement in
existing real-time systems.
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