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Abstract: A novel neuro adaptive control framework for discrete-time multivariable
nonlinear uncertain systems is developed. The proposed framework is Lyapunov-based
and guarantees, instead of ultimate boundedness, partial asymptotic stability of the closed-
loop system; that is, Lyapunov stability of the closed-loopsystem states and attraction
with respect to the plant states. Unlike standard neural network approximation, we assume
that the approximation error can be confined in a small gain-type norm-bounded conic
sector over a compact set. This helps to couple tools from robust control with adaptive
laws in discrete time to prove partial asymptotic stabilityof the closed-loop system.
Finally, an illustrative numerical example is provided to demonstrate the efficacy of the
proposed approach.Copyright c© 2005 IFAC
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1. INTRODUCTION

Due to the severe complexities, nonlinearities, and
uncertainties in modern controlled systems, neural
networks provide an ideal framework for adaptive
control because of their parallel processing flexibility
and adaptability. This is owing to the fact that neural
networks can approximate continuous nonlinear maps
from collective action of very simple and autonomous
process units that are mutually connected in simple
ways. Consequently, use of the neural networks for
system identification and control is one of the major
areas of research interest.

Even though neural network-based adaptive control
algorithms have been extensively developed in the lit-

erature, it is quite common using Lyapunov-like func-
tions to claim that the neural network controllers can
guaranteeultimate boundednessof the closed-loop
system states. This implies that the plant states con-
verge to aneighborhoodof an equilibrium point (see,
for example, Chen & Khalil (1995), Jagannathan &
Lewis (1996), Geet al.(2003) for discrete-time cases).
The reason why stability is not guaranteed stems from
the fact that uncertainties in the system dynamics can-
not be captured by neural networks perfectly and the
residual approximation error is characterized viain-
finity normover a given compact set. As one can sur-
mise, however, the ultimate boundedness claims are
somewhat conservative since standard Lyapunov-like
theorems typically used to show ultimate boundedness
of the closed-loop states provide onlysufficientcon-



ditions, while neural network controllers may possi-
bly achieve plant state convergence to the equilibrium
point.

In this paper we develop a neuro adaptive control
framework for a class of discrete-time nonlinear un-
certain dynamical systems which ensures state con-
vergence as well as boundedness of the neural network
weighting gains. Specifically, the proposed framework
is Lyapunov-based and guarantees partial asymptotic
stability of the closed-loop system; that is, Lyapunov
stability of the overall closed-loop states and con-
vergence with respect to the plant state. The neuro
adaptive controllers are constructedwithout requir-
ing explicit knowledge of the system dynamics other
than the fact that the plant dynamics are continu-
ously differentiable and that the approximation error
of unknown nonlinearities lies in a small gain-type
norm boundedconic sector over a compact set. Fur-
thermore, the proposed neuro control architecture is
modular in the sense that if a nominal linear design
model is available, the neuro adaptive controller can
be augmented to the nominal design to account for
system nonlinearities and system uncertainty.

Finally, we emphasize that we do not impose any lin-
ear growth condition on the system dynamics. Note
that in the literature on classical adaptive control for
discrete-time systems, it is typically assumed that the
nonlinear system dynamics have the linear growth
rate which is necessary in proving Lyapunov stabil-
ity rather than practical stability (ultimate bounded-
ness). Our novel characterization of system uncertain-
ties (the small-gain type bound on the norm of the
modelling error) allows to prove asymptotic stability
without requiring linear growth condition for the sys-
tem dynamics.

The notation used in this paper is fairly standard.
Specifically,R denotes the set of real numbers,R

n

denotes the set ofn × 1 real column vectors, andN
denotes the set of nonnegative integers. Furthermore,
we write (·)T to denote transpose,tr(·) for the trace
operator,ln(·) for the natural log operator,σmax(·) to
denote the maximum singular value of a matrix, vec(·)
denotes the column stacking operator for a matrix, and
‖ · ‖ for the Euclidean vector norm.

2. STABLE NEURO ADAPTIVE CONTROL FOR
DISCRETE-TIME NONLINEAR UNCERTAIN

SYSTEMS

In this section, we characterize neural adaptive feed-
back laws for discrete-time nonlinear uncertain sys-
tems. Specifically, consider the controlled nonlinear
uncertain dynamical systemG given by

x(k + 1) = f(x(k)) + G(x(k))u(k), x(0) = x0,

k ∈ N , (1)

wherex(k) ∈ R
n, k ∈ N , is the state vector,u(k) ∈

R
m, k ∈ N , is the control input,f : R

n → R
n is

continuously differentiable and satisfiesf(0) = 0, and
G : R

n → R
n×m.

In this section, we assume thatf(·) is an unknown
function andf(·) andG(·) are given by

f(x) = Ax + ∆f(x), (2)

G(x) = BGn(x), (3)

where A ∈ R
n×n and B ∈ R

n×m are known
matrices,Gn : R

n → R
m×m is a known matrix

function such thatdet Gn(x) 6= 0, x ∈ R
n, and

∆f : R
n → R

n is an uncertain function belonging
to the uncertainty setF given by

F = {∆f : R
n → R

n : ∆f(0) = 0,

∆f(x) = Bδ(x), x ∈ R
n}, (4)

whereδ : R
n → R

m is an uncertain continuously dif-
ferentiable function such thatδ(0) = 0. It is important
to note that sinceδ(x) is continuously differentiable
and δ(0) = 0, it follows that there exists a contin-
uous matrix function∆ : R

n → R
m×n such that

δ(x) = ∆(x)x, x ∈ R
n. Furthermore, we assume that

the continuous matrix function∆(·) can be approxi-
mated over a compact setDc ⊂ R

n by a linear in the
parameters neural network up to a desired accuracy so
that

coli(∆(x)) = WT
i σ(x) + εi(x), x ∈ Dc,

i = 1, · · · , n, (5)

where coli(∆(·)) denotes theith column of ∆(·),
WT

i ∈ R
m×s, i = 1, · · · , n, are optimalunknown

(constant) weights that minimize the approximation
error overDc, εi : R

n → R
m, i = 1, · · · , n, are

modeling errors such thatσmax(Υ(x)) ≤ γ−1, x ∈
R

n, whereΥ(x) , [ε1(x), · · · , εn(x)] and γ > 0,
andσ : R

n → R
s is a given basis function such that

0 ≤ σ(x) ≤ 1, x ∈ R
nx .

Next, defining

ϕ(x) , δ(x) − WT[x ⊗ σ(x)], (6)

whereWT , [WT
1 , · · · ,WT

n ] ∈ R
m×ns, it follows

from (5) and Cauchy-Schwartz inequality that

ϕT(x)ϕ(x) = ‖∆(x)x − WT(x ⊗ σ(x))‖2

= ‖∆(x)x − Σ(x)x‖2

= ‖Υ(x)x‖2

≤ γ−2xTx, x ∈ Dc, (7)

whereΣ(x) , [WT
1 σ(x), · · · ,WT

n σ(x)] and⊗ de-
notes Kronecker product. This corresponds to a non-
linear small gain-type norm bounded uncertainty char-
acterization forϕ(·) (see Figure 1).

Theorem 2.1.Consider the nonlinear uncertain dy-
namical systemG given by (1) wheref(·) andG(·) are
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Fig. 1. Visualization of functionϕ(·)

given by (2) and (3), respectively, and∆f(·) belongs
to F . Assume there exists a matrixK ∈ R

m×n such
thatAs , A + BK is asymptotically stable. Further-
more, for a givenγ > 0, assume there exist positive-
definite matricesP ∈ R

n×n andR ∈ R
n×n such that

P = AT
s PAs + AT

s PB[γ2Im − BTPB]−1BTPAs

+ (1 + α + β)In + R, (8)

whereα > 0, γ2Im−BTPB > 0, and, for allx ∈ Dc,
β satisfies

β ≥max{c, n/λmin(P )}γ−2 1 + xTPx

c + σ̃T(x)σ̃(x)

·
( 2

α
BTPAsA

T
s PB +

2

αγ2
(BTPB)2 + BTPB

)

,

(9)

whereσ̃(x) , x ⊗ σ(x) andc > 0. Finally, letc > 0.
Then the neural adaptive feedback control law

u(k) = G−1
n (x(k))

[

Kx(k)

− ŴT(k)[x(k) ⊗ σ(x(k))]
]

, (10)

whereŴT(k) ∈ R
m×ns, k ∈ N , andσ : R

n → R
s

is a given basis function, with update law

ŴT(k + 1) = ŴT(k) + 1
c+σT(x(k))σ(x(k))‖x(k)‖2 B†

· [x(k + 1) − Asx(k)][x(k) ⊗ σ(x(k))]T,

ŴT(0) = ŴT
0 , (11)

guarantees that there exists a positively invariant set
Dα ⊂ R

n × R
m×ns such that(0,WT) ∈ Dα, where

WT ∈ R
m×ns, and the solution(x(k), ŴT(k)) ≡

(0,WT) of the closed-loop system given by (1), (10),
(11) is Lyapunov stable andx(k) → 0 ask → ∞ for
all ∆f(·) ∈ F and(x0, Ŵ

T
0 ) ∈ Dα.

Proof. First, note that withu(k), k ∈ N , given by (10)
it follows from (1)–(3) that

x(k + 1) = Ax(k) + ∆f(x(k)) + BKx(k)

− BŴT(k)[x(k) ⊗ σ(x(k))],

x(0) = x0, k ∈ N , (12)

or, equivalently, using (6),

x(k + 1) = Asx(k) + B
[

ϕ(x(k))

− W̃T(k)[x(k) ⊗ σ(x(k))]
]

,

x(0) = x0, k ∈ N , (13)

whereW̃T(k) , ŴT(k) − WT. Now, adding and
subtractingWT to and from (11) and using (13) it
follows that

W̃T(k + 1)

= W̃T(k) + 1
c+σT(x(k))σ(x(k))‖x(k)‖2 B†B

·
[

ϕ(x(k)) − W̃T(k)σ̃(x(k))
]

σ̃T(x(k))

= W̃T(k) + 1
c+σ̃T(x(k))σ̃(x(k))

[

ϕ(x(k))

− W̃T(k)σ̃(x(k))
]

σ̃T(x(k)). (14)

To show Lyapunov stability of the closed-loop system
(11) and (13) consider the Lyapunov function candi-
date

V (x, W̃T) = ln(1 + xTPx) + atr W̃W̃T, (15)

where

a = max{c, n/λmin(P )}
(

2
α
BTPAsA

T
s PB

+ 2
αγ2 (BTPB)2 + BTPB

)

. (16)

Note thatV (0, W̃T) = 0 and, sinceP is positive
definite anda > 0, V (x, W̃T) > 0 for all (x, W̃T) 6=
(0, 0). Now, lettingx(k), k ∈ N , denote the solution
to (13) and using (7), (8), and (11), it follows that
the Lyapunov difference along the closed-loop system
trajectories is given by

∆V (x(k), W̃T(k))

, V (x(k + 1), W̃T(k + 1)) − V (x(k), W̃T(k))

= ln
(

1 +
(

Asx(k) + B
[

ϕ(x(k))

−W̃T(k)σ̃(x(k))
])T

P
(

Asx(k) + B
[

ϕ(x(k))

−W̃T(k)σ̃(x(k))
]))

+ atr
(

W̃T(k)

+ 1
c+σ̃T(x(k))σ̃(x(k))

[

ϕ(x(k)) − W̃T(k)σ̃(x(k))
]

· σ̃T(x(k))
)T

(

W̃T(k) + 1
c+σ̃T(x(k))σ̃(x(k))

·
[

ϕ(x(k)) − W̃T(k)σ̃(x(k))
]

σ̃T(x(k))
)

− ln(1 + xT(k)Px(k)) − atrW̃ (k)W̃T(k)

= ln
(

1 +
[

xT(k)AT
s PAsx(k)

+ 2xT(k)AT
s PBϕ(x(k))

− 2xT(k)AT
s PBW̃T(k)σ̃(x(k))



+ ϕT(x(k))BPBϕ(x(k))

− 2ϕT(x(k))BPBW̃T(k)σ̃(x(k))

+ σ̃T(x(k))W̃ (k)BPBW̃T(k)σ̃(x(k))

− xT(k)Px(k)
]

[

1 + xT(k)Px(k)
]−1

)

+ atrW̃ (k)W̃T(k) + 2a
c+σ̃T(x(k))σ̃(x(k))

· trW (k)
[

ϕ(x(k)) − W̃T(k)σ̃(x(k))
]

σ̃T(x(k))

+ a
(c+σ̃T(x(k))σ̃(x(k)))2

tr σ̃(x(k))
[

ϕT(x(k))

− σ̃T(x(k))W̃ (k)
][

ϕ(x(k)) − W̃T(k)σ̃(x(k))
]

· σ̃T(x(k)) − atrW̃ (k)W̃T(k)

≤
[

−xT(k)((1 + α + β)In + R

+ AT
s PB[γ2Im − BTPB]−1BTPAs)x(k)

+ 2xT(k)AT
s PBϕ(x(k))

− 2xT(k)AT
s PBW̃T(k)σ̃(x(k))

+ ϕT(x(k))BTPBϕ(x(k))

− 2ϕT(x(k))BTPBW̃T(k)σ̃(x(k))

+ σ̃T(x(k))W̃ (k)BTPBW̃T(k)σ̃(x(k))
]

·
[

1 + xT(k)Px(k)
]−1

+ 2a
c+σ̃T(x(k))σ̃(x(k))

· tr W̃ (k)
[

ϕ(x(k)) − W̃T(k)σ̃(x(k))
]

σ̃T(x(k))

+ a
c+σ̃T(x(k))σ̃(x(k))

tr
[

ϕT(x(k))

− σ̃T(x(k))W̃ (k)
][

ϕ(x(k)) − W̃T(k)σ̃(x(k))
]

≤
[

−xT(k)((1 + α + β)In + R)x(k)

− xT(k)AT
s PB[γ2Im − BTPB]−1BTPAsx(k)

+ xT(k)AT
s PB(γ2Im − BTPB)−1BTPAsx(k)

+ ϕT(x(k))(γ2Im − BTPB)ϕ(x(k))

− 2xT(k)AT
s PBW̃T(k)σ̃(x(k))

+ ϕT(x(k))BTPBϕ(x(k))

− 2ϕT(x(k))BTPBW̃T(k)σ̃(x(k))

+ σ̃T(x(k))W̃ (k)BTPBW̃T(k)σ̃(x(k))
]

·
[

1 + xT(k)Px(k)
]−1

+ 2a
c+σ̃T(x(k))σ̃(x(k))

· tr W̃ (k)
[

ϕ(x(k)) − W̃T(k)σ̃(x(k))
]

σ̃T(x(k))

+ a
c+σ̃T(x(k))σ̃(x(k)) tr

[

ϕT(x(k))

− σ̃T(x(k))W̃ (k)
][

ϕ(x(k)) − W̃T(k)σ̃(x(k))
]

,

(17)

where in (17) we usedln a − ln b = ln a
b

andln(1 +
c) ≤ c for a, b > 0 and c ≥ −1, respectively, and

σ̃Tσ̃
c+σ̃Tσ̃

< 1. Furthermore, note that̃σT(x)σ̃(x) ≤

nxTx.

Now, definingQ1 , 2
α
BTPAsA

T
s PB and Q2 ,

2
αγ2 (BTPB)2, it follows from (17) that

Dc × R
m×ns

D̃α

x

W̃
T

×

0

Fig. 2. Visualization of sets used in the proof of
Theorem 2.1

∆V (x(k), W̃T(k))

≤
[

−xT(k)(In + R)x(k) + xT(k)x(k)

−
[

xT(k), σ̃T(x(k))W̃ (k)
]

·

[

1
2αIn AT

s PB

BTPAs Q1

] [

x(k)

W̃T(k)σ̃(x(k))

]

−
[

ϕT(x(k)), σ̃T(x(k))W̃ (k)
]

·

[

1
2αγ2In BTPB

BTPB Q2

] [

ϕ(x(k))

W̃T(k)σ̃(x(k))

]

+ σ̃T(x(k))W̃ (k)(Q1 + Q2)W̃
T(k)σ̃(x(k))

+ σ̃T(x(k))W̃ (k)BTPBW̃T(k)σ̃(x(k))
]

·
[

1 + xT(k)Px(k)
]−1

− a
c+σ̃T(x(k))σ̃(x(k)) σ̃

T(x(k))W̃ (k)W̃Tσ̃(x(k))

+ a
c+σ̃T(x(k))σ̃(x(k))ϕ

T(x(k))ϕ(x(k))

≤− xT(k)Rx(k)
1+xT(k)Px(k)

− σ̃T(x(k))W̃ (k)R̃(x(k))W̃T(k)σ̃(x(k))
(c+σ̃T(x(k))σ̃(x(k)))(1+xT(k)Px(k)) , (18)

where

R̃(x) , a(1 + xTPx)Im

− (Q1 + Q2 + BTPB)(c + σ̃T(x)σ̃(x))

≥ a(1 + xTPx)Im

− (Q1 + Q2 + BTPB)(c + nxTx)

≥ 0, x ∈ Dc. (19)

Hence, the Lyapunov difference given by (18) yields

∆V (x(k), W̃T(k))≤−
xT(k)Rx(k)

1 + xT(k)Px(k)
≤ 0,

k ∈ N . (20)

Next, let

D̃α ,

{

(x, W̃T) ∈ R
n × R

m×ns : V (x, W̃T) ≤ α
}

,

(21)

whereα is the maximum value such that̃Dα ⊆ Dc ×
R

m×ns (see Figure 2). Now, since∆V (x(k),WT(k))

≤ 0 for all (x(k), W̃T(k)) ∈ D̃α and k ∈ N , it



follows thatD̃α is positively invariant. Next, sincẽDα

is positively invariant, it follows that

Dα ,

{

(x, ŴT) ∈ R
n × R

m×ns :

(x, ŴT − WT) ∈ D̃α

}

(22)

is also positively invariant. Furthermore, it follows
from (20) and (the discrete version of) Theorem 2
of (Chellaboina & Haddad 2002) that the solution
(x(k), ŴT(k)) ≡ (0,WT) to (11) and (13) is Lya-
punov stable andx(k) → 0 as k → ∞ for all
∆f(·) ∈ F and(x0, Ŵ0) ∈ Dα. ¤

Remark 2.1.The conditions in Theorem 2.1 imply
partial asymptotic stability, that is, the solution(x(k),

ŴT(k)) ≡ (0,WT) of the overall closed-loop system
is Lyapunov stable andx(k) → 0 ask → ∞. Hence,
it follows from (11) thatŴT(k + 1) − ŴT(k) → 0
ask → ∞.

Remark 2.2.Since the Lyapunov functionV (x, W̃T)
used in the proof of Theorem 2.1 is radially un-
bounded, the control law (10) ensures global asymp-
totic stability in the case where the neural network
approximation holds inRn. However, the existence of
a global neural network approximator for an uncer-
tain nonlinear map cannot in general be established.
Hence, as is common in the neural network literature,
for a given arbitrarily large compact setDc ⊂ R

n,
we assume that there exists an approximator for the
unknown nonlinear map up to a desired accuracy. In
the case where∆(·) is continuous onRn, it follows
from the Stone-Weierstrass theorem that∆(·) can be
approximated over an arbitrarily large compact setDc.
In this case, our neuro adaptive controller guarantees
semiglobal partial asymptotic stability.

Remark 2.3.Note that the neuro adaptive controller
(10) and (11) can be constructed to guarantee par-
tial asymptotic stability using standard discrete-time
linear H∞ theory. Specifically, it follows from stan-
dard discrete-timeH∞ theory (Guet al. 1989) that

‖G(z)‖∞ < γ, whereG(z) ∼

[

As B
E 0

]

and E is

such thatETE = (1 + α + β)In + R, if and only if
there exists a positive-definite matrixP satisfying the
discrete-time bounded real Riccati equation (8).

It is important to note that the adaptive control law
(10) and (11) does not require the explicit knowledge
of the optimal weighting matrixW . Furthermore, no
specific structure on the nonlinear dynamicsf(x) is
required to apply Theorem 2.1. However, if (1) is in
normal form (Isidori 1995), then we can always con-
struct a neuro adaptive control lawwithout requiring
knowledge of the system dynamicsf(x). To see this,
assume that the nonlinear uncertain systemG is gen-
erated by the difference model

zi(k + τi) = fui(z(k)) +

m
∑

j=1

Gs(i,j)(z(k))uj(k),

k ∈ N , i = 1, · · · ,m, (23)

where τi ∈ N denotes the time delay (or rela-
tive degree) with respect to the outputzi, z(k) =
[z1(k), · · · , z1(k + τ1 − 1), · · · , zm(k), · · · , zm(k +
τm − 1)], andz(0) = z0. Here, we assume that the
square matrix functionGs(z) composed of the entries
Gs(i,j)(z), i, j = 1, · · · ,m, is such thatdet Gs(z) 6=

0, z ∈ R
τ̂ , whereτ̂ = τ1 + · · · + τm. Furthermore,

since (23) is in a form where it does not possess inter-
nal dynamics, it follows that̂τ = n. The case where
(23) possesses input-to-state stable internal dynamics
can be analogously handled as shown in Hayakawaet
al. (2004).

Next, definexi(k) , [ zi(k), · · · , zi(k+τi−2)]T, i =
1, · · · ,m, xm+1(k) , [ z1(k + τ1 −1), · · · , zm(k +
τm − 1)]T, andx(k) , [xT

1 (k), · · · , xT
m+1(k)]T so

that (23) can be described by (1) with

A =

[

A0

0m×n

]

, ∆f(x) =

[

0(n−m)×1

fu(x)

]

,

G(x) =

[

0(n−m)×m

Gs(x)

]

, (24)

whereA0 ∈ R
(n−m)×n is a known matrix of zeros and

ones capturing the multivariable controllable canoni-
cal form representation (Chen 1984),fu : R

n → R
m

is an unknown function and satisfiesfu(0) = 0, and
Gs : R

n → R
m×m. Note that∆f(·) belongs toF

with B = [0m×(n−m), Im]T and δ(x) = fu(x). In
this case,Gn(x) ≡ Gs(x). Furthermore, sinceA is in
multivariable controllable canonical form, we can al-
ways constructK such thatA+BK is asymptotically
stable.

3. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section we present a numerical example to
demonstrate the utility of the proposed discrete-time
neural network adaptive control framework for adap-
tive stabilization. Specifically, consider the linear un-
certain system given by

z(k + 2) + fu(z(k), z(k + 1)) = bu(k),

z(0) = z0, z(1) = z1, k ∈ N , (25)

where z(k) ∈ R, k ∈ N , u(k) ∈ R, k ∈ N ,
and fu : R × R → R is continuously differen-
tiable. Note that withx1(k) = z(k) and x2(k) =
z(k + 1), (25) can be written in state space form

(1) with x = [x1, x2]
T, A =

[

0 1
a1 a2

]

, ∆f(x) =

[0,−a1x1−a2x2−fu(x1, x2)]
T, andG(x) = [0, b]T,

wherea1, a2 ∈ R. Here, we assume that∆f(x) is
unknown and can be written as∆f(x) = Bδ(x),
whereδ(x) = − 1

b
[a1x1 + a2x2 + fu(x1, x2)] is an
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Fig. 3. State trajectory and control signal versus time

unknown, continuously differentiable function. Next,
let K = 1

b
[k1, k2], wherek1, k2 are arbitrary scalars,

so thatAs = A + BK =

[

0 1
a1 + k1 a2 + k2

]

. Now,

with the proper choice ofk1 andk2, it follows from
Theorem 2.1 that if there existsP > 0 satisfying (8),
then the adaptive feedback controller (10) guarantees
that x(k) → 0 as k → ∞. Specifically, here we
choosea1 = 0, a2 = 0, k1 = 0.1, k2 = 0.1, b = 1,
c = 1, γ = 18, α = 1, β = 2.8001, σ(x) =
[1, tanh(λ1x1), · · · , tanh(6λ1x1), tanh(λ2x2), · · · ,
tanh(6λ2x2)]

T, whereλ1 = λ2 = 0.1, and R =
0.1999I2 so thatP satisfying (8) is given by

P =

[

5.1057 0.1179
0.1179 10.2358

]

.

With fu(x1, x2) = c1
x3

1

1+x2

1

+c2 ln(1+x2
2)+c3x

2
1, c1 =

1.5, c2 = −0.8, c3 = −0.2, and initial conditions
x(0) = [2, 0.8]T andŴ (0) = 026×1, Figure 3 shows
the state trajectory versus time and the control signal
versus time. Finally, Figure 4 shows the adaptive gain
history versus time.

4. CONCLUSION

A neuro adaptive control framework for adaptive
stabilization of discrete-time multivariable nonlinear
uncertain systems was developed. Using Lyapunov
methods along with the standard robust control the-
ory the proposed framework was shown to guarantee
partial asymptotic stability of the closed-loop system
rather than ultimate boundedness; that is, asymptotic
stability with respect to part of the closed-loop system
states associated with the plant. Finally, an illustrative
numerical example was presented to show the utility
of the proposed neuro adaptive stabilization scheme.
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Ŵ16(t)
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Ŵ24(t)
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Fig. 4. Neural network weighting functions versus
time
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