
     

 
 
 
 
 
 
 
 

SQUARING DOWN DESIGN FOR OVER-ACTUATED SYSTEMS IN MULTIVARIABLE QFT 
 

Edward Boje 
 

School of Electrical, Electronic and Computer Engineering 
University of KwaZulu-Natal, 4041, Durban, South Africa 

email: boje@ukzn.ac.za  
 
 

 
Abstract: This paper discusses the problem of design of a control authority allocation to 
“square down” uncertain, over-actuated systems before feedback design is contemplated. 
It is assumed that the uncertainty in the plant is unstructured and that the subsequent 
design will be based on Horowitz’ quantitative feedback theory (QFT).  
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1. INTRODUCTION 

 
Multivariable QFT is an established method for 
feedback design of uncertain multivariable systems. 
Like all methods for robust multivariable control 
design, MIMO QFT suffers from certain limitations, 
including over-design and the requirement for a 
certain level of expertise in design execution. This 
notwithstanding, the method is an attractive option 
for practical design and tuning, where for example, 
plant model uncertainty comes in a complicated way 
from uncertainty in underlying parameters of the 
plant or may be the outcome of repeated system 
identification experiments. 
 
This paper addresses the problem of how to allocate 
controller outputs to plant inputs (i.e. actuator 
authority allocation) in the case of non-square, over-
actuated plants. Consider the plant illustrated in 
Figure 1 where P(s) is full rank (except at its 
transmission zeros) with m inputs and n outputs. 
Clearly, the loop transfer function must be square 
(n×n) and a (m×n) pre-compensator K(s) will be 
designed before a diagonal controller design. For 
simplicity assume that the sensor has high bandwidth 
relative to the loop bandwidth, H = I. For this 
problem, a number of considerations may be 

important: 
1) To minimise over-design caused by the design 

method. MIMO QFT uses over-bounding of yet 
to be designed loops to enable a sequential design 
procedure. Inherently, this approach may be 
conservative but approximate decoupling can 
reduce the level of over design. 

2) To make use of actuators within their bandwidth 
and amplitude capability. 

3) To design with integrity against actuator and 
sensor failure. 

 
The general approach of all MIMO QFT methods can 
be summarised as that of finding appropriate matrix 
manipulations and splittings to separate the plant and 
a diagonal controller in such a way that over design 
is minimised (Boje, 2002). For non-diagonal 
controller design, it is convenient both from a design 
perspective and for final tuning, to separate a low-
gain non-diagonal part of the controller from the 
diagonal part and this paper seeks to extend the 
existing approach to this problem (Boje and Nwokah, 
2001, and Boje, 2002) to non-square plants. In 
previous work, the plant matrix inverse was used as 
the plant transfer function was taken to be square and 
regular. The control authority pre-compensator was 
designed as a set of dynamic elementary operations, 
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Figure 1: Two degree of freedom multivariable system



     

ensuring that the designer could keep track of the 
gain of the pre-compensator and ensuring that it did 
not add right hand plant poles and zeros to the loop 
transmission. For non-square, over-actuated plants, it 
is not possible to work with the plant inverse (unless 
the control authority allocation is assigned) and a non 
plant inverting approach may be required. 
 
The focus of this paper is to develop a control 
allocation design method that aims to reduce the 
interaction at appropriate frequencies. In general, this 
will ease the problem of over-design inherent in the 
MIMO QFT method and may allow decentralised 
stability results to be applied. The design must be 
tractable when applied to system with practical 
uncertainty (for example described by an enumerated 
plant set). Other approaches to the squaring-down 
problem have investigated a single plant instance and 
use the squaring-down to influence (where possible) 
the transmission zeros (especially those in the right 
hand plane) of the resulting square system.  
 

2. CONTROL AUTHORITY DESIGN 
2.1 Revision of design method with plant inversion 
and diagonal matrix splitting 
The transfer function from reference to output is, 

( ) GFKPGKPIT 1−+=Y/R , and separating the 
diagonal controller from the remainder of the loop 
transfer function, this can be written 

 ( )( ) FGTGKP =+−
Y/R

1  (1) 

Performing an appropriate splitting of diagonal 
(diag{·}) and off-diagonal (od{·}) parts yields, 

 ( ){ }( )( ) FGTXIGKP =++−
Y/Rinv

1diag  (2) 

with the interaction matrix (with subscript inv to 
denote that it is based on plant inversion) , 

 
( ){ }( ) ( ){ }

( ){ } ( ){ }111
diag_inv

111
inv

oddiag

oddiag

−−−

−−−
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+=

KPKPS
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In previous work (Limebeer, 1982; Nwokah, 
Nordgren and Grewal, 1995; Skogestad and 
Postlethwaite, 1996; Boje and Nwokah, 2001; and 
Boje, 2002) the role of the interaction matrix has 
been recognised: If the spectral radius of the 
interaction matrix is less than unity (ρ{Xinv} ≤ 1) for 
all frequencies, { } 0arg inv =+∆ XI around the 
Nyquist contour and closed loop stability is 
determined by the behaviour of the diagonal elements 
of the design. Secondly, small interaction matrix 
elements contribute to small over-design as the QFT 
design is executed by writing,  
 Y/RY/R TXFTT invdiag_inv −=  (4) 

with Tdiag_inv and Sdiag_inv respectively the 
complimentary sensitivity and sensitivity of the 
diagonal loop using the inverse of the plant with  
control allocation. In eq.(3) it is readily observed that 
the interaction matrix can be made small either by 
small sensitivity (typically at low frequency relative 
to the loop bandwidth where the loop gain can be 
made large), or by appropriate control authority 

allocation making ( ){ } ( ){ }111 oddiag −−− KPKP  small. 
Previous work has used the Perron root of the 
interaction matrix, { } { }XX ρλλ ≤= maxP , with 
element-wise magnitudes. The benefit of using the 
Perron root is that for irreducible matrices it is a 
monotonic, differentiable function of the matrix 
elements and reducing the magnitude of any element 
will reduce the Perron root. The eigenvalue 
sensitivity can be obtained from the participation 
factor – the normalised product of the corresponding 
right and left Perron root eigenvectors. 
 
When P is square and regular, ( ) 111 −−− = PKPK  
and K can be designed via its inverse as a set of 
elementary operations and the inverse of the resulting 
unimodular matrix is easy to compute.  This 
approach has connections to early work of 
Rosenbrock (1969) on the inverse Nyquist array. 
 
2.2 Tracking design without plant inversion  
For non-square P, it is necessary to have an estimate 
of the pre-filter, F, or equivalently, specifications on 
the complimentary sensitivity, T in order to obtain 
non-plant inversion formulas as follows  
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With ( ) ( ) 1−+=+ XIZI , eq.(5) can be written 

( ) diagTTZI =+ . If ρ{X} ≤ 1, ∑
∞

=
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1)(
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converges and the spectral radius of Z is bounded by, 

{ } { }( ) { }
{ }X
XXXZ

ρ
ρρρρ
−

=≤








= ∑∑
∞

=

∞

= 111 k

k

k

k  (6) 

The Perron root can also be over-bounded by, 
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Theorem 1: Decentralised stability 
Given:  
a) { }P∈P , regular, having NPO (open loop) poles 

and NZO (open loop transmission) zeros in the 
closed right half plane (RHP), and no hidden 
unstable modes.  

b) ( ) PPKGI 1−+  analytic at the closed RHP poles 
of P (including infinity). 

c) F, K, and G stable and KG minimum phase by 
design. 

d) ρ(X) < 1 for all { }P∈P  and for s∈δD, the 
Nyquist contour covering the RHP. 



     

Then, T in eq(5) is stable iff each diagonal loop, 
li = gi (PK)ii is designed so that, for all { }P∈P , the 
loci of 1/li , taken together, encircle the (-1,j0) point 
ND = -NZO times (in the opposite direction) as s 
traverses the Nyquist contour. 
 
Proof: Following Maciejowski (1989), Theorem 2.8, 
Let ( )PKGI +  have NCL RHP zeros. P has NPO RHP 
poles and NZO RHP zeros. (c) ⇒ { } 0)det(arg =∆ G . 
(d) ρ(X) < 1 ⇒ ( ){ } 0detarg =+∆ XI . Now write, 

( )( ) { }( )GPKPKXIPKGI +=++ −1diag  and apply 
the Principle of Argument around the Nyquist 
contour, 

( ){ } ( ){ }
{ } { }( ){ }GPKPK

XIPKGI

+∆+∆=

+∆++∆
−1diagdetarg detarg

detargdetarg
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1
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∑
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G
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l  

T stable ⇔ NCL = 0 ⇔ NZO = -ND. 
 
2.3 Input design 
Consider (for example) the transfer of reference 
signals to the plant input, calculated via the diagonal 
controller output. This results naturally in non-plant 
inverting formulas (Boje, 1989). 

( )
{ }( )( )

U*/RU/R

/RU

/RU

KTT
FTXIKPG

TKPG

=
=++

=+
−

−

*
1

*
1

diag  (7) 

 
2.4 Control authority allocation design 
In MIMO QFT design, the approach is to allocate the 
specification tolerance by over-bounding the 
magnitudes of unknown components on the right 
hand side of relevant design equations by the worst-
case specifications. Element-wise this is  
Output design 

 ( ) diagdiag TXITTXI +≤≤−  

Input design 

 .
*diag*

spec
/RU/RU TXGFST +≤ , 

or 

 { } 




 +≤ spec

U*/RU*/R TKPFGST oddiag  

The control authority allocation problem for this 
paper is to reduce the interaction index in a 
systematic way with tolerable use of off-channel 
effort. This must be done at frequencies where the 
sensitivity is not small but where loop gain is still 
required, i.e. in the loop gain cross-over frequency 
range.  
  
Consider the effect of an elementary operation Kn  

 [ ]
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on the relevant portion of X, { } { } 1diagod −KPKP . 
The hth row, jth

 column element becomes, 

{ } { }[ ]
ijjijj

ijhihj
hj kpp

kpp
+

+
=−1diagod KPKP . 

This is a linear fractional mapping in kij (and hence 
amenable to design) and the result can be compared 
to the value before the introduction of Kn,  

{ } { }[ ]
jj

hj
hj p

p
=−1diagod PP .  

 
To select which element of X to reduce, notice that 
the differential sensitivity of λP(X) with respect to 

elements of |X|, is 0
T

>=
∂
∂

wv
ji

ij

P wv

x
λ

 where v and w 

are the left and right eigenvectors of |X|. Note that the 
Perron root is simple and the eigenvectors can be 
scaled to be non-negative. The Perron root is 
therefore analytic and monotonic with respect to |xij|.  
 

3 EXAMPLE 
3.1 Ill conditioned plant – modified benchmark  
To illustrate the control authority allocation design, 
the following 3-input, 2-output example is 
considered. It is motivated by the 2-input, 2-output a 
distillation column benchmark problem (Skogestad, 
Morari and Doyle, 1988, Limebeer, 1991, and 
references in Boje, 2002a). The original problem is 
ill conditioned, having an interaction matrix with 
near unity spectral radius over all frequencies. 
 
Plant: 

{ }sT
i iev

s
s −









+

= diag
111
8.075.085.0

175
1)(P  

vi ∈ [0.8,1.2]; Ti ∈ [0,1] minutes representing valve 
gain uncertainty and input delay respectively 
 

For  
T

010
001









=K , the Perron root is  

{ } { }( ) 94.0diagod 1 =−KPKPPλ  for all frequencies 
and for all plants (the interaction index is 
independent of diagonal scaling).  
 

For  
T

100
001









=K , the Perron root is 

{ } { }( ) 97.0diagod 1 =−KPKPPλ .   
 
At design frequency ω = 0.5 rad/min (where the 
original design has big problems with interaction and 
high sensitivity), allocating control effort from the 

third input, via 
T

32

31
10
01









=

k
k

K , allows some 

improvement in interaction. Figure 2 shows the value 



     

sets on the plane of k3j for different levels of 
improvement (relative to k3j = 0) and the static 
allocation indicated, k31 = -5.6dB∠-180° and 
k32 = -6.1dB∠-180° result in an interaction index of 

{ } { }( ) 022.1023.1/94.092.0diagod 1 ×≈=−KPKPPλ
For practical engineering, this is hardly an 
improvement but adequately illustrates the method at 
a single frequency.  
 
CONCLUSIONS 
This paper has introduced the design of a control 
authority matrix to precede diagonal feedback 
controller design in multivariable QFT for over-
actuated plants. The design approach is to use 
elementary operations to reduce the interaction at 
critical frequencies near the cross-over frequency 
range. If the interaction index can be made less than 
unity by the combination of the sensitivity design 
(typically at low frequencies) and forward loop 
decoupling via control authority allocation (around 
the gain cross-over frequency) then decentralised 
stability results apply.  
 
One area for future work is a detailed examination of 
the possibilities for design of both phase and gain of 
individual elements to ensure that the reduction in 
interaction index does not have a negative impact on 
the location of the squared down system’s zeros. 
There is also scope for application to a realistic 
problem requiring dynamic allocation and that would 
exercise practical design constraints such as actuator 
bandwidth and amplitude limits; cost of control via 
different inputs and integrity against saturation or 
actuator failure. 
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Figure 2a: Design of k31 

 
Figure 2b: Design of k32 
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