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Abstract: A direct adaptive control framework for nonlinear uncertain delay dynamical
systems is developed. The proposed framework is Lyapunov-Krasovskii-based and guar-
antees asymptotic stability with respect to the plant states. Specifically, if the nonlinear
system is represented in normal form, then it is shown that nonlinear adaptive controllers
can be constructed without requiring knowledge of the system dynamics except the
system delay amount. Furthermore, in the case where the system is particularly given
in a multivariable second-order form, the adaptive controllaw is shown to be simplified
and constructed without even requiring the information of the delay amount. Finally, a
numerical example is provided to demonstrate the efficacy ofthe proposed approach.
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1. INTRODUCTION

The presence of time delay effects in complex, modern
controlled systems can severely degrade closed-loop
system performance, and in some cases drive the sys-
tem to instability. Furthermore, it is unavoidable that
there exist discrepancies between real-world systems
and their system models that are constructed for con-
trol purposes. It is easily surmised that the applying
controls to a physical system involving coupled sources
of these effects may produce highly undesirable system
response such as oscillatory behavior, actuator failure,
and even chaos.

In the face of such system uncertainties as well as time
delays, research on adaptive control methodologies is
still far from complete. Specifically, even though recent
notable results concerning adaptive controllers is given
in Foda & Mahmoud (1998), Wu (2000), Wu (2002),
and Niculescu & Annaswamy (2003), these approaches
can handle either linear or a very special class of
nonlinear systems withknown system delays to show
ultimate boundedness (practical stability) rather than
Lyapunov stability.

In this paper we develop an adaptive control frame-
work for nonlinear uncertain systems in the presence
of system time delays. In particular, in the first part of
the paper, a Lyapunov-Krasovskii-based direct adap-
tive control framework is developed that requires the
knowledge of the system delay amount and guarantees
partial asymptotic stability of the closed-loop system;
that is, Lyapunov stability of the overall closed-loop
systems states and attraction with respect to the plant
states. As a consequence, the adaptive gain states are
shown to be bounded. In the case where the nonlinear
system is represented in normal form (Isidori 1995)
with input-to-state stable internal dynamics (Sontag
1989, Isidori 1995), we construct nonlinear adaptive
controllerswithout requiring knowledge of the system
dynamics except the delay amount. In addition, the
proposed nonlinear adaptive controllers also guarantee
asymptotic stability of the system state if the system
dynamics are unknownand the input matrix func-
tion is parameterized by an unknown constant sign-
definite matrix. Finally, in the second part of the paper,
we specialize the aforementioned results to multivari-
able second-order uncertain nonlinear systems. In this
case, we remove the assumption that the system delay
amount is known. This implies that the adaptive control
framework becomesdelay-independent.



The notation used in this paper is fairly standard.
Specifically,R denotes the set of real numbers,R

n×n

denotes the set ofn × n real matrices,( )T denotes
transpose, andIn denotes then×n identity matrix. Fur-
thermore, we writetr(·) for the trace operator,‖ · ‖ for
the Euclidean vector norm, and‖ · ‖F for the Frobenius
matrix norm. Finally,M ⊗ N denotes the Kronecker
product of matricesM andN .

2. DIRECT ADAPTIVE CONTROL FOR DELAY
DYNAMICAL SYSTEMS

In this section we consider the problem of characteriz-
ing direct adaptive feedback control laws for nonlinear
uncertain systems with time delay. Specifically, con-
sider the nonlinear uncertain delay dynamical system
G of the form

ẋ(t) = f(x(t)) + fd(x(t), x(t − τ)) + G(x(t))u(t),

x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0, (1)

where x(t) ∈ R
n is the state vector,u(t) ∈ R

m

is the control input,f : R
n → R

n and satisfies
f(0) = 0, fd : R

n × R
n → R

n and satisfies
fd(0, 0) = 0, τ ≥ 0 is a system delay amount,
G : R

n → R
n×m, η(·) ∈ C = C([−τ, 0], Rn)

is a continuous vector-valued function specifying the
initial state of the system, andC([−τ, 0], Rn) denotes
a Banach space of continuous functions mapping the
interval [−τ, 0] into R

n equipped with the topology of
uniform convergence.

Note that the state of (1) at timet is the piece of
trajectoriesx betweent − τ andt, or, equivalently, the
elementxt in the space of continuous functions defined
on the interval[−τ, 0] and taking values inRn; that is,
xt ∈ C([−τ, 0], Rn), wherext(θ) , x(t + θ), θ ∈
[−τ, 0]. Furthermore, since for a given timet the piece
of the trajectoriesxt is defined on[−τ, 0], the uniform
norm |||xt||| = supθ∈[−τ,0] ‖x(t + θ)‖ is used for the
definitions of Lyapunov and asymptotic stability of (1)
with u(t) ≡ 0. For further details see Krasovskii (1963)
and Hale & Verduyn Lunel (1993). The controlu(·)
in (1) is restricted to the class ofadmissible controls
consisting of measurable functions such thatu(t) ∈
R

m, t ≥ 0. Furthermore, for the nonlinear uncertain
systemG we assume that the required properties for
the existence and uniqueness of solutions are satisfied;
that is, f(·), fd(·), G(·), and u(·) satisfy sufficient
regularity conditions such that (1) has a unique solution
forward in time.

Theorem 2.1. Consider the nonlinear uncertain delay
dynamical systemG given by (1). Assume there exist
matricesKg ∈ R

m×s, Kdg ∈ R
m×sd , a continuously

differentiable functionVs : R
n → R, and continuous

functionsVsd : R
n → R, Ĝ : R

n → R
m×m, Ĝd :

R
n → R

m×m, F : R
n → R

s, Fd : R
n × R

n → R
sd ,

and ℓ : R
n × R

n → R
p such thatVs(·) and Vds(·)

are positive definite, radially unbounded,Vs(0) = 0,
Vsd(0) = 0, ℓ(0, 0) = 0, F (0) = 0, Fd(0, 0) = 0, and,
for all x ∈ R

n andxd ∈ R
n,

0 = V ′

s (x)fs(x) + V ′

s (x)fds(x, xd) + Vsd(x)

− Vsd(xd) + ℓT(x, xd)ℓ(x, xd), (2)

where

fs(x) , f(x) + G(x)Ĝ(x)KgF (x), (3)

fds(x, xd) , fd(x, xd) + G(x)Ĝd(x)KdgFd(x, xd).

(4)

Firthermore, letQ ∈ R
m×m, Qd ∈ R

m×m, Y ∈
R

s×s, andYd ∈ R
sd×sd be positive definite. Then the

adaptive feedback control law

u(t) = Ĝ(x(t))K(t)F (x(t))

+ Ĝd(x(t))Kd(t)Fd(x(t), x(t − τ)), (5)

whereK(t) ∈ R
m×s andKd(t) ∈ R

m×sd , with update
laws

K̇(t) =− 1
2QĜT(x(t))GT(x(t))V ′

s (x(t))

· FT(x(t))Y, K(0) = K0, (6)

K̇d(t) =− 1
2QdĜT

d (x(t))GT(x(t))V ′

s (x(t))

· FT
d (x(t), x(t − τ))Yd, K(0) = Kd0, (7)

guarantees that the solution(x(t),K(t),Kd(t)) ≡
(0,Kg,Kdg) of the closed-loop system given by (1),
(5)–(7) is Lyapunov stable andℓ(x(t), x(t − τ)) → 0
as t → ∞. If, in addition, ℓT(x, xd)ℓ(x, xd) > 0,
(x, xd) ∈ R

n × R
n, (x, xd) 6= (0, 0), then|||xt||| → 0

ast → ∞ for all η(·) ∈ C.

Proof. Note that withu(t), t ≥ 0, given by (5) it
follows from (1) that

ẋ(t) = f(x(t)) + fd(x(t), x(t − τ))

+ G(x(t))Ĝ(x(t))K(t)F (x(t))

+ G(x(t))Ĝd(x(t))Kd(t)Fd(x(t), x(t − τ)),

x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0, (8)

or, equivalently,

ẋ(t) = fs(x(t)) + fds(x(t), x(t − τ))

+ G(x(t))Ĝ(x(t))(K(t) − Kg)F (x(t))

+ G(x(t))Ĝd(x(t))(Kd(t) − Kdg)

· Fd(x(t), x(t − τ)),

x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0. (9)

To show Lyapunov stability of the closed-loop system
(6), (7), and (9) consider the Lyapunov-Krasovskii
functional candidateV : C × R

m×s × R
m×sd → R

given by

V (ψ,K,Kd) = Vs(ψ(0)) +

0
∫

−τ

Vsd(ψ(θ))dθ

+ trQ−1(K − Kg)Y
−1(K − Kg)

T

+ trQ−1
d (Kd − Kdg)Y

−1
d (Kd − Kdg)

T,

ψ(·) ∈ C, (10)

whereψ(θ) , x(·)(θ). Note thatV (ψe,Kg,Kdg) = 0,
whereψe(θ) = 0, θ ∈ [−τ, 0]. Furthermore, note that
there exist classK∞ functionsα1(·), α2(·), α3(·) such
that

V (ψ,K,Kd)≥ α1(‖ψ(0)‖) + α2(‖K − Kg‖F)

+ α3(‖Kd − Kdg‖F). (11)



Now, letting x(t) denote the solution to (9) and us-
ing (2), (6), and (7), it follows that the Lyapunov-
Krasovskii directional derivative along the closed-loop
system trajectories is given by

V̇ (xt,K(t),Kd(t))

= V ′

s (x(t))
[

fs(x(t)) + fds(x(t), x(t − τ))

+ G(x(t))Ĝ(x(t))(K(t) − Kg)F (x(t))

+ G(x(t))Ĝd(x(t))(Kd(t) − Kdg)

· Fd(x(t), x(t − τ))
]

+ Vsd(x(t)) − Vsd(x(t − τ))

+ 2tr Q−1(K(t) − Kg)Y
−1K̇T(t)

+ 2tr Q−1
d (Kd(t) − Kdg)Y

−1
d K̇T

d (t)

=−ℓT(x(t), x(t − τ))ℓ(x(t), x(t − τ))

+tr
[

(K(t) − Kg)F (x(t))V ′

s (x(t))G(x(t))

·Ĝ(x(t))
]

+ tr
[

(Kd(t) − Kdg)Fd(x(t))V ′

s (x(t))

·G(x(t))Ĝd(x(t))
]

− tr
[

(K(t) − Kg)F (x(t))

·V ′

s (x(t))G(x(t))Ĝ(x(t))
]

− tr
[

(Kd(t) − Kdg)

·Fd(x(t))V ′

s (x(t))G(x(t))Ĝd(x(t))
]

=−ℓT(x(t), x(t − τ))ℓ(x(t), x(t − τ))

≤ 0, t ≥ 0, (12)

which proves that the solution(x(t),K(t),Kd(t)) ≡
(0,Kg,Kdg) to (6), (7), and (9) is Lyapunov sta-
ble. Furthermore, since the positive orbitγ+(η(θ),K0,
Kd0) is bounded andγ+(η(θ),K0,Kd0) belongs to a
compact subset ofC × R

m×s × R
m×sd (Hale 1969),

it follows from Theorem 3.1 of Hale & Verduyn Lunel
(1993, p. 143) thatℓ(x(t), x(t − τ)) → 0 ast → ∞
for all η(·) ∈ C. If, in addition,ℓT(x, xd)ℓ(x, xd) > 0,
(x, xd) ∈ R

n × R
n, (x, xd) 6= (0, 0), then|||xt||| → 0

ast → ∞ for all η(·) ∈ C. ¤

Remark 2.1. Note that in the case whereℓT(x, xd)
·ℓ(x, xd) > 0, (x, xd) ∈ R

n × R
n, (x, xd) 6= (0, 0),

the conditions in Theorem 2.1 imply thatx(t) → 0
as t → ∞ and hence it follows from (6) and (7) that
K̇(t) → 0 andK̇d(t) → 0 ast → ∞.

Remark 2.2. In the case whereℓT(x, xd)ℓ(x, xd) =

ℓ̂T(x)ℓ̂(x) > 0, (x, xd) ∈ R
n × R

n, x 6= 0, or
ℓT(x, xd)ℓ(x, xd) = ℓTd (xd)ℓd(xd) > 0, (x, xd) ∈

R
n × R

n, xd 6= 0, whereℓ̂ : R
n → R

p̂, we can also
conclude that|||xt||| → 0 ast → ∞ for all η(·) ∈ C.

It is important to note that the adaptive control law
(5)–(7) doesnot require explicit knowledge of the gain
matricesKg andKdg; Theorem 2.1 simply requires the
existence ofKg andKdg along with the construction
of F (x), Fd(x, xd), Ĝ(x), Ĝd(x), Vs(x), andVsd(x)
such that (2) holds. Furthermore, no specific structure
on the nonlinear dynamicsf(x) is required to apply
Theorem 2.1. However, if (1) is in normal form with
asymptotically stable internal dynamics (Isidori 1995),
then we can always construct functionsF : R

n → R
s

and Fd : R
n × R

n → R
sd , with F (0) = 0 and

Fd(0, 0) = 0, such that the condition (2) is satisfied.
To see this assume that the nonlinear uncertain system
G is generated by

q
(ri)
i (t) = fui(q(t)) + fdui(q(t), q(t − τ))

+

m
∑

j=1

Gs(i,j)(q(t))uj(t), t ≥ 0,

i = 1, · · · ,m, (13)

where q = [q1, · · · , q
(r1−1)
1 , · · · , qm, · · · , q

(rm−1)
m ]T,

q(θ) = η(θ), −τ ≤ θ ≤ 0, q
(ri)
i denotes theri

th

derivative of qi, and ri denotes the relative degree
with respect to the outputqi. Here we assume that the
square matrix functionGs(q) composed of the entries
Gs(i,j)(q), i, j = 1, · · · ,m, is such thatdet Gs(q) 6= 0,
q ∈ R

r̂, wherer̂ = r1 + · · ·+rm is the (vector) relative
degree of (13). Furthermore, since (13) is in a form
where it does not possess internal dynamics, it follows
that r̂ = n. The case where (13) possesses input-to-
state stable internal dynamics can be handled as shown
in Hayakawaet al. (June 2005).

Next, definexi ,

[

qi, · · · , q
(ri−2)
i

]T

, i = 1, · · · ,m,

xm+1 ,

[

q
(r1−1)
1 , · · · , q

(rm−1)
m

]T

, and x ,
[

xT
1 ,

· · · , xT
m+1

]T
, so that (13) can be described as (1) with

f(x) = Ãx + f̃u(x), fd(x, xd) =

[

0(n−m)×m

fdu(x, xd)

]

,

G(x) =

[

0(n−m)×m

Gs(x)

]

,
(14)

where

Ã =

[

A0

0m×n

]

, f̃u(x) =

[

0(n−m)×1

fu(x)

]

,

A0 ∈ R
(n−m)×n is a known matrix of zeros and ones

capturing the multivariable controllable canonical form
representation (Chen 1984),fu : R

n → R
m and

fdu : R
n × R

n → R
m are unknown functions such

that fu(0) = 0 and fdu(0, 0) = 0, and xd denotes
the delayed value ofx. Here, we assume thatfu(x)
andfdu(x, xd) are unknown and are parameterized as
fu(x) = Θfn(x) and fdu(x, xd) = Θdfdn(x, xd),
where fn : R

n → R
q and satisfiesfn(0) = 0,

fdn : R
n × R

n → R
qd and satisfiesfdn(0, 0) = 0, and

Θ ∈ R
m×q andΘd ∈ R

m×qd are matrices of uncertain
constant parameters.

Next, to apply Theorem 2.1 to the uncertain system
(1) with f(x), fd(x, xd), andG(x) given by (14), let
Kg ∈ R

m×s andKdg ∈ R
m×sd , wheres = q + r and

sd = qd + rd, be given by

Kg = [Θn − Θ, Φn ], Kdg = [Θdn − Θd, Φdn ],

(15)

whereΘn ∈ R
m×q, Θdn ∈ R

m×qd , Φn ∈ R
m×r, and

Φdn ∈ R
m×rd are known matrices, and let

F (x) =

[

fn(x)

f̂n(x)

]

, Fd(x, xd) =

[

fdn(x, xd)

f̂dn(x, xd)

]

,

(16)

wheref̂n : R
n → R

r andf̂dn : R
n × R

n → R
rd , with

f̂n(0) = 0 and f̂dn(0, 0) = 0, are arbitrary functions.
In this case, it follows that, witĥG(x) = Ĝd(x) =
G−1

s (x),



fs(x) = f(x) + G(x)Ĝ(x)KgF (x)

= Ãx + f̃u(x) +

[

0(n−m)×m

Gs(x)

]

G−1
s (x)

·
[

Θnfn(x) − Θfn(x) + Φnf̂n(x)
]

= Ãx +

[

0(n−m)×1

Θnfn(x) + Φnf̂n(x)

]

(17)

and

fds(x, xd) = fd(x, xd) + G(x)Ĝd(x)KdgFd(x, xd)

= fd(x, xd) +

[

0(n−m)×m

Gs(x)

]

G−1
s (x)

· [Θdnfdn(x, xd) − Θfdn(x, xd)

+Φdnf̂dn(x, xd)
]

=

[

0(n−m)×1

Θdnfdn(x, xd) + Φdnf̂dn(x, xd)

]

.

(18)

Now, sinceΘn ∈ R
m×q, Θdn ∈ R

m×qd , Φn ∈ R
m×r,

andΦdn ∈ R
m×rd are arbitrary constant matrices and

f̂n : R
n → R

r andf̂dn : R
n ×R

n → R
rd are arbitrary

functions, we can always constructKg, Kdg, F (x), and
Fd(x, xd) such that (2) holds without knowledge of
f(x) andfd(x, xd). In particular, choosingΘnfn(x)+

Φnf̂n(x) = Âx andΘdnfdn(x, xd)+Φdnf̂dn(x, xd) =

Âdxd, whereÂ ∈ R
m×n andÂd ∈ R

m×n, it follows
that (17) and (18) have the formfs(x) = Asx and
fds(x, xd) = Adsxd, whereAs = [AT

0 , ÂT]T is in
multivariable controllable canonical form andAds =
[0n×(n−m), Â

T
d ]T. Hence, choosingfs(x) = Asx,

whereAs is asymptotically stable and in multivariable
controllable canonical form, it follows that if there
exists a positive-definite matrixP that solves the linear
matrix inequality (LMI) feasibility problem

0 >

[

AT
s P + PAs + R PAds

AT
dsP −R

]

, (19)

whereR is a positive-definite matrix, then (2) is sat-
isfied with functionsVs(x) = xTPx and Vsd(x) =

xTRx. Alternatively, choosingÂd = 0, any solution
P > 0 to 0 = AT

s P + PAs + R satisfies the condition
in Remark 2.2. In these cases, the update laws for the
adaptive controller (5) is given in the form

K̇(t) =−QĜT(x(t))GT(x(t))Px(t)FT(x(t))Y,

(20)

K̇d(t) =−QdĜT
d (x(t))GT(x(t))Px(t)

· FT
d (x(t), x(t − τ))Yd. (21)

Next, we consider the case wheref(x), fd(x, xd), and
G(x) are uncertain. Specifically, we assume thatG(x)
is such thatGs(x) is unknown and is parameterized
asGs(x) = BuGn(x), whereGn : R

n → R
m×m is

known and satisfiesdetGn(x) 6= 0, x ∈ R
n, andBu ∈

R
m×m, with det Bu 6= 0, is an unknown symmetric

sign-definite matrix but the sign definiteness ofBu is
known; that is,Bu > 0 or Bu < 0. For the statement
of the next result defineB0 ,

[

0m×(n−m), Im

]T
for

Bu > 0, andB0 ,
[

0m×(n−m), −Im

]T
for Bu < 0.

Corollary 2.1. Consider the nonlinear delay dynamical
systemG given by (1) withf(x), fd(x, xd), andG(x)

given by (14) andGs(x) = BuGn(x), whereBu is an
unknown symmetric matrix and the sign definiteness
of Bu is known. Assume there exist matricesKg ∈
R

m×s, Kdg ∈ R
m×sd , a continuously differentiable

function Vs : R
n → R, and continuous functions

Vsd : R
n → R, F : R

n → R
s, Fd : R

n × R
n → R

sd ,
and ℓ : R

n × R
n → R

p such thatVs(·) and Vds(·)
are positive definite, radially unbounded,Vs(0) = 0,
Vsd(0) = 0, ℓ(0, 0) = 0, F (0) = 0, Fd(0, 0) = 0,
and, for allx ∈ R

n andxd ∈ R
n, (2) holds. Finally, let

Y ∈ R
s×s andYd ∈ R

sd×sd be positive definite. Then
the adaptive feedback control law

u(t) = G−1
n (x(t))K(t)F (x(t))

+ G−1
n (x(t))Kd(t)Fd(x(t), x(t − τ)), (22)

whereK(t) ∈ R
m×s andKd(t) ∈ R

m×sd , with update
laws

K̇(t) =− 1
2BT

0 V ′T
s (x(t))FT(x(t))Y, (23)

K̇d(t) =− 1
2BT

0 V ′T
s (x(t))FT

d (x(t), x(t − τ))Yd, (24)

guarantees that the solution(x(t),K(t),Kd(t)) ≡
(0,Kg,Kdg) of the closed-loop system given by (1),
(22)–(24) is Lyapunov stable andℓ(x(t), x(t−τ)) → 0
as t → ∞. If, in addition, ℓT(x, xd)ℓ(x, xd) > 0,
(x, xd) ∈ R

n × R
n, (x, xd) 6= (0, 0), then|||xt||| → 0

ast → ∞ for all η(·) ∈ C.

Proof. The result is a direct consequence of Theo-
rem 2.1. First, letĜ(x) = Ĝd(x) = G−1

n (x) so
that G(x)Ĝ(x) = G(x)Ĝd(x) = [0m×(n−m), Bu]T.
Next, sinceQ and Qd are arbitrary positive-definite
matrices,Q in (6) and Qd in (7) can be replaced
by q|Bu|

−1 and qd|Bu|
−1, respectively, whereq and

qd are positive constants and|Bu| = (B2
u)

1

2 , where
(·)

1

2 denotes the (unique) positive-definite square root.
Now, sinceBu is symmetric and sign definite it follows
from the Schur decomposition thatBu = UDBu

UT,
where U is orthogonal andDBu

is real diagonal.
Hence,|Bu|

−1ĜT(x)GT(x) = |Bu|
−1ĜT

d (x)GT(x) =
[0m×(n−m), Im] = BT

0 , whereIm = Im for Bu > 0
andIm = −Im for Bu < 0. Now, (6) and (7), withqY
and qdYd replaced byY and Yd, respectively, imply
(23) and (24), respectively. ¤

3. DIRECT ADAPTIVE CONTROL FOR
SECOND-ORDER SYSTEMS WITH UNKNOWN

TIME DELAY

In this section we present a result that does not require
knowledge of the delay amountτ . Specifically, in this
section, we consider the nonlinear uncertain matrix
second-order delay dynamical system given by (13)
with the relative degree given byr1 = · · · = rm =
2. With x1 , [q1, · · · , qm]T, x2 , [q̇1, · · · , q̇m]T,
and x , [xT

1 , xT
2 ]T, it follows that the state space

representation is equivalently given by (1) withn =
2m, f(x), fd(x, xd), and G(x) given by (14). Note

that Ã in (14) is given byÃ =

[

0m Im

0m 0m

]

. Here, we

assume thatf(x), fd(x, xd), andG(x) are uncertain,
fu(x) is parameterized asfu(x) = Θfn(x), where
fn : R

2m → R
q and satisfiesfn(0) = 0, Θ ∈ R

2m×q is
a matrix of uncertain constant parameters, andfd(·, ·)
belongs toFd, where



Fd , {fd : R
2m × R

2m → R
m : fdu(0, 0) = 0,

fT
du(x, xd)fdu(x, xd) ≤ γ−2xT

d xd}, (25)

andγ > 0. Furthermore, as in Section 2 we similarly
assume thatG(x) is such thatGs(x) is unknown and
is parameterized asGs(x) = BuGn(x), whereGn :
R

n → R
m×m is known and satisfiesdet Gn(x) 6= 0,

x ∈ R
n, andBu ∈ R

m×m, with det Bu 6= 0, is an
unknown symmetric sign-definite matrix but the sign
definiteness ofBu is known; that is,Bu > 0 orBu < 0.
For the statement of the next result definesgn(Bu) = 1
for Bu > 0, andsgn(Bu) = −1 for Bu < 0.

Corollary 3.1. Consider the nonlinear uncertain matrix-
second order delay dynamical systemG given by (1)
with f(·), fd(·, ·), andG(·) given by (14) andGs(x) =
BuGn(x), wherefd(·, ·) ∈ Fd andBu is an unknown
symmetric matrix and the sign definiteness ofBu is
known. LetF (x) , [fT

n (x), xT]T, Y ∈ R
s×s be a

positive-definite matrix, andp , [p12, p2]
T ∈ R

2 be a
positive vector; that is,p12, p2 > 0. Then the adaptive
feedback control law

u(t) = G−1
n (x(t))K(t)F (x(t)), (26)

whereK(t) ∈ R
m×(q+m), with update law

K̇(t) = −sgn(Bu)(pT ⊗ Im)x(t)FT(x(t))Y, (27)

guarantees that the solution(x(t),K(t)) ≡ (0,Kg),
whereKg ∈ R

m×(q+m), of the closed-loop system
given by (1), (26), (27) is Lyapunov stable and|||xt||| →
0 as t → ∞ for all η(·) ∈ C, fd(·) ∈ Fd, and
τ ∈ [0,∞).

Proof. First, let as = [as1, as2]
T, as1 < − 1

2p12

(1 +

γ−2(p2
12 + p2

2)) (< 0), as2 < min{− 1
2p12p2

·(1 +

4p2
12 + γ−2(p2

12 + p2
2)),−

1
p12p2

(as1p
2
2 + p2

12)} (< 0),
and p1 = −as1p2 − as2p12 (> 0). Furthermore,

defineP ,

[

p1Im p12Im

p12Im p2Im

]

, Ãs ,

[

0m Im

as1Im as2Im

]

,

B0 , [0m, Im]T, andKg , B−1
u [−Θ, aT

s ⊗ Im]. Then
it follows that

R ,−(ÃT
s P + PÃs + I2m + γ−2PB0B

T
0 P )

≥

[

−2as1p12Im

−(p1 + as1p2 + as2p12)Im

−(p1 + as1p2 + as2p12)Im

−(2p12 + as2p2)Im

]

+ λmax(I2m + γ−2PB0B
T
0 P )I2m

≥

[

−2as1p12Im 0
0 −(2p12 + as2p2)Im

]

+ λmax(1 + γ−2(p2
12 + p2

2))I2m

> 0. (28)

Next, note that withu(t) given by (26) it follows from
(1) that

ẋ(t) = f(x(t)) + fd(x(t), x(t − τ))

+ G(x(t))G−1
n (x(t))K(t)F (x(t))

x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0, (29)

or, equivalently,

ẋ(t) = Ãsx(t) + B0fdu(x(t), x(t − τ))

+ B0Bu(K(t) − Kg)F (x(t)),

x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0. (30)

To show Lyapunov stability of the closed-loop system
(27) and (30) consider the Lyapunov-Krasovskii func-
tional candidateV : C × R

m×m → R given by

V (ψ,K) = ψT(0)Pψ(0) +

0
∫

−τ

ψT(θ)ψ(θ) dθ

+ tr |Bu|(K − Kg)Y
−1(K − Kg)

T,

ψ(·) ∈ C, (31)

where |Bu| = (B2
u)

1

2 and (·)
1

2 denotes the (unique)
positive-definite square roots. Note thatV (ψe,Kg) =
0, whereψe(θ) = 0, θ ∈ [−τ, 0]. Furthermore, since
p1 > 0 and det P = −as1p

2
2 − as2p12p2 − p2

12 >

−as1p
2
2 + 1

p12p2

(as1p
2
2 + p2

12)p12p2 − p2
12 = 0, P is

positive definite and thus it follows that there exist class
K∞ functionsα1(·) andα2(·) such that

V (ψ,K) ≥ α1(‖ψ(0)‖) + α2(‖K − Kg‖F). (32)

Now, lettingx(t) denote the solution to (30) and using
(25), (27), and (28), it follows that the Lyapunov-
Krasovskii directional derivative along the closed-loop
system trajectories is given by

V̇ (xt,K(t))

= 2xT(t)P
[

Ãsx(t) + B0fdu(x(t), x(t − τ))

+ B0Bu(K(t) − Kg)F (x(t))
]

+ xT(t)x(t)

− xT(t − τ)x(t − τ)

+ 2tr |Bu|(K(t) − Kg)Y
−1K̇T(t)

= xT(t)(ÃT
s P + PÃs)x(t)

+ 2xT(t)PB0fdu(x(t), x(t − τ))

+2tr
[

(K(t) − Kg)F (x(t))xT(t)PB0Bu

]

+ xT(t)x(t) − xT(t − τ)x(t − τ)

−2tr
[

(K(t) − Kg)F (x(t))xT(t)(pT ⊗ Im)T

· B0[sgn(Bu)|Bu|]
]

≤ xT(t)(ÃT
s P + PÃs)x(t)

+ γ−2xT(t)PB0B
T
0 Px(t)

+ γ2fT
du(x(t), x(t − τ))fdu(x(t), x(t − τ))

+ xT(t)x(t) − xT(t − τ)x(t − τ)

≤ xT(t)(ÃT
s P + PÃs + I2m + γ−2PB0B

T
0 P )x(t)

+ xT(t − τ)x(t − τ) − xT(t − τ)x(t − τ)

=−xT(t)Rx(t)

≤ 0, t ≥ 0, (33)

which proves that the solution(x(t),K(t)) ≡ (0,Kg)
to (27) and (30) is Lyapunov stable. Furthermore, since
R > 0, it follows from Theorem 3.1 of Hale & Ver-
duyn Lunel (1993, p. 143) that|||xt||| → 0 ast → ∞ for
all η(·) ∈ C, fd(·, ·) ∈ Fd, andτ ∈ [0,∞). ¤
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Fig. 1. Phase portrait of controlled system

4. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section we present a numerical example to
demonstrate the utility of the proposed direct adaptive
control framework for adaptive stabilization of non-
linear uncertain delay dynamical systems. Specifically,
consider the nonlinear uncertain delay dynamical sys-
tem given by

z̈(t) + µ(z4(t) − α)ż(t) + β sin(λz(t − τ))z(t)

= bu(t), z(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0, (34)

whereµ, α, β, λ, b ∈ R are unknown. Note that with
x1 = z andx2 = ż, (34) can be written in state space
form (1) with x = [x1, x2]

T, f(x) = [x2,−µ(x4
1 −

α)x2]
T, fd(x, xd) = [0,−β sin(λx1)xd1]

T, andG(x) =
[0, b]T. Here, we assume thatf(x) andfd(x) are un-
known andf(x) can be parameterized asf(x) =
[x2, θ1x2 + θ2x

4
1x2]

T, whereθ1 andθ2 are unknown
constants. Note thatfd(x, xd) ∈ Fd with γ = β−1.
Furthermore, we assume thatsign b is known andτ > 0

is unknown. Next, letF (x) =
[

x2, x
4
1x2, x̂1

]T
and

Kg = 1
b
[as1 − θ1,−θ2, as2], whereas1, as2 are arbi-

trary scalars, so that̃As =

[

0 1
as1 as2

]

. Now, with the

proper choice ofas1 andas2 for a given positive vector
p ∈ R

2, it follows from Theorem 3.1 that the adaptive
feedback controller (26) guarantees that|||xt||| → 0 as
t → ∞ for all τ ∈ [0,∞). With µ = 2, α = 1, β = −1,
b = 3, τ = 3, p = [2, 1]T, Y = 0.1I4, and initial
conditions[η(θ), η̇(θ)]T = [1, 0]T, −3 ≤ θ ≤ 0, and
K(0) = [0, 0, 0], Figure 1 shows the phase portrait of
the controlled and uncontrolled system. Figure 2 shows
the state trajectories versus time and the control signal
versus time. Finally, Figure 3 shows the adaptive gain
history versus time.

5. CONCLUSION

A direct adaptive nonlinear control framework for
adaptive stabilization of multivariable nonlinear uncer-
tain delay dynamical systems was developed. Using
Lyapunov-Krasovskii functionals the proposed frame-
work was shown to guarantee partial asymptotic sta-
bility of the closed-loop system. Furthermore, in the
case where the nonlinear system is represented in nor-
mal form with input-to-state stable zero dynamics, the
nonlinear adaptive controllers were constructed with-
out knowledge of the system dynamics. Specifically, in
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the case of matrix second-order nonlinear systems, the
adaptive controller does not even require the knowl-
edge of the delay amount. Finally, an illustrative nu-
merical example was presented to show the utility of
the proposed adaptive stabilization scheme.
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