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Abstract: A direct adaptive control framework for nonlinemcertain delay dynamical
systems is developed. The proposed framework is Lyapumragd<skii-based and guar-
antees asymptotic stability with respect to the plant steBpecifically, if the nonlinear
system is represented in normal form, then it is shown thalimear adaptive controllers
can be constructed without requiring knowledge of the systiynamics except the
system delay amount. Furthermore, in the case where themsyist particularly given

in a multivariable second-order form, the adaptive corlad is shown to be simplified

and constructed without even requiring the informationhef tlelay amount. Finally, a
numerical example is provided to demonstrate the efficacthefproposed approach.
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1. INTRODUCTION In this paper we develop an adaptive control frame-
work for nonlinear uncertain systems in the presence
of system time delays. In particular, in the first part of
the paper, a Lyapunov-Krasovskii-based direct adap-

; - ive control framework is developed that requires the
The presence of time delay effects in complex, moder;
controlled systems can severely degrade closed-lo owledge of the system delay amount and guarantees

system performance, and in some cases drive the s rtial asymptotic stability of the closed-loop system;

tem to instability. Furthermore, it is unavoidable tha at is, Lyapunov stability of the overall closed-loop

; : ; stems states and attraction with respect to the plant
there exist discrepancies between real-world syste %/ates As a consequence, the adaptivpe gain statgs are
and their system models that are constructed for co hown to be bounded. In the case where the nonlinear
trol purposes. It is easily surmised that the applyin .

: ; - tem is represented in normal form (Isidori 1995)
controls to a physical system involving coupled source ystel g - -
of these effects may produce highly undesirable syste fth input-to-state stable internal dynamics (Sontag

; - ; 89, Isidori 1995), we construct nonlinear adaptive
;%Sdpgcgﬁ Csrl]Jggsas oscillatory behavior, actuator failur ontrollerswithout requiring knowledge of the system

dynamics except the delay amount. In addition, the
In the face of such system uncertainties as well as timrgroposed nonlinear adaptive controllers also guarantee
delays, research on adaptive control methodologies &symptotic stability of the system state if the system
still far from complete. Specifically, even though recentlynamics are unknowrand the input matrix func-
notable results concerning adaptive controllers is givetion is parameterized by an unknown constant sign-
in Foda & Mahmoud (1998), Wu (2000), Wu (2002),definite matrix. Finally, in the second part of the paper,
and Niculescu & Annaswamy (2003), these approachg¥e specialize the aforementioned results to multivari-
can handle either linear or a very special class aible second-order uncertain nonlinear systems. In this
nonlinear systems witknown system delays to show case, we remove the assumption that the system delay
ultimate boundedness (practical stability) rather than amountis known. This implies that the adaptive control
Lyapunov stability. framework becomedelay-independent.



The notation used in this paper is fairly standard. fo(z) 2 f(z) + G(2)G(z) K F (), (3)
Specifically,R denotes the set of real numbeRs:*" A R

denotes the set af x n real matrices( )T denotes fas(@,24) = fa(w, za) + G(2)Ga(2) KagFa(2, za)-
transpose, anfl, denotes the x n identity matrix. Fur- (4)
thermore, we writer(-) for the trace operatof, - || for ,

the Euclidean vector norm, arid || for the Frobenius Firthermore, letQ) € R™*™, Qq € R™ ™, Y €
matrix norm. Finally,M @ N denotes the Kronecker R°*?, andYy € R*¢**¢ be positive definite. Then the

product of matrices/ and.V. adaptive feedback control law
2. DIRECT ADAPTIVE CONTROL FOR DELAY u(t) = G(z(t) K (t)F(x(t))
DYNAMICAL SYSTEMS Gt Ka(t) Fa((t). (¢ — 7)), (5)

In this section we consider the problem of characterizyherex (t) € R™** andKq4(t) € R™**, with update
ing direct adaptive feedback control laws for nonlineajgys ’
uncertain systems with time delay. Specifically, con-

sider the nonlinear uncertain delay dynamical systemy(¢) = —%QGT(x(t))GT(x

g of the form T
#(t) = F@() + fala(t), 2(t — 7)) + G@t)ult) FR (@)Y, K(0) = Ko, 6)
) 5 . _ 1 AT . T - .
I DRSS PICHEDICHEONE)

_ F{ (@(t),2(t = 7))Ya, K(0) = Kao, (7)
where z(t) € R" is the state vectoru(t) € R™
is the control input,f : R® — R™ and satisfies guarantees that the solutiofx(t), K (t), Kq(t)) =
f(0) = 0, fqa : R* x R® — R" and satisfies (0, K, Kqg) Of the closed-loop system given by (1),
fa(0,0) = 0, 7 > 0 is a system delay amount, (5)—(7) is Lyapunov stable antz(t), z(t — 7)) — 0
G : R" — R™™, () € C = C([-7,0,R") ast — oo. If, in addition, ¢*(z,z4)l(z,z4) > 0,
is a continuous vector-valued function specifying thgz, z4) € R™ x R™, (z,z4) # (0,0), then|z;|| — 0
initial state of the system, and([—7,0],R") denotes ast — oc forall5(-) € C
a Banach space of continuous functions mapping the
interval [—7, 0] into R™ equipped with the topology of
uniform convergence. Proof. Note that withu(t), t > 0, given by (5) it

Note that the state of (1) at timeis the piece of follows from (1) that

trajectoriesr betweent — 7 andt, or, equivalently, the () = f(x(t)) + fa(x(t), z(t — 7))

elementz; in the space of continuous functions defined N

on the interva[—r, 0] and taking values iiR™; that is, + G(x(t))G(2(t) K () F(z(t))

[xt € ]C([—TF]O],R"), where:ffct(e) (s g), 0 € + G(z(t))Ga(z(t)) Ka(t) Fa(z(t), x(t — 1)),
—7,0]. Furthermore, since for a given timehe piece

of the trajectories;; is defined or{—, 0], the uniform z(0) =n(0), —71<0<0, t>0, (8)

norm [z || = supge(_,q [|z(t + 0)|l is used for the
definitions of Lyapunov and asymptotic stability of (1)
with u(t) = 0. For further details see Krasovskii (1963)  i(t) = fs(z(¢)
and Hale & Verduyn Lunel (1993). The control-)

or, equivalently,
+ fas(@(t), z(t — 7))

in (1) is restricted to the class afimissible controls + G(2(1))G(2(t)) (K(t) — Kg)F(x(t))
consisting of measurable functions such thét) < g _

R™, ¢t > 0. Furthermore, for the nonlinear uncertain +G@®)Ga(@(t)(Ka(t) — Kag)
systemG we assume that the required properties for cFy(x(t),z(t — 7)),

the existence and uniqueness of solutions are satisfied; 2(0) = n(0), —r<0<0,t>0. (9)

that is, f(-), fa(-), G(-), andu(-) satisfy sufficient
regularity conditions such that (1) has a unique solutiofg show Lyapunov stability of the closed-loop system
forward in time. (6), (7), and (9) consider the Lyapunov-Krasovskii

. . . functional candidaté” : C x R™*® x R™*5d R
Theorem 2.1. Consider the nonlinear uncertain delaygiven py -

dynamical systeng given by (1). Assume there exist 0

matricesK, € R™**, K4, € R™*%1 a continuously _

differentiable functiony/, :gR" — R, and continuous VW, K, Ka) = Va(¥(0)) + / Vaa (1 (0))d0
functionsVyg : R® — R, G : R* — R™*™ (G4 : T

B S i Rk e

an : R x R* — such thatV(-) and V(- _ _

are positive definite, radially unboundeld,(0) = 0, +tr Qg (Ka — Kag) Yy (Ka — Kag)™,

Vaa(0) =0, £(0,0) = 0, F'(0) = 0, F4(0,0) = 0, and, yec, (10

for all z € R” andz4 € R, vhyec (10

A
0=V'(2)f. V! () + Vi wherey(0) = x(.y(0). Note thatV (¢, K, Kqg) = 0,
S@)f(@) + . (@) fas(, 2a) a(@) wherey,(0) = 0, § € [—7,0]. Furthermore, note that
— Via(za) + €7 (z,wa)(2, 24), (2)  there exist clask ., functionsa (-), as(-), as(-) such
that
where

V(, K, Ka) > aq([[$(0)]]) + ca([| K — Kgllr)
+ a3([|[Ka — Kagllr)- (11)



Now, letting z(¢) denote the solution to (9) and us- F,4(0,0) = 0, such that the condition (2) is satisfied.
ing (2), (6), and (7), it follows that the Lyapunov- To see this assume that the nonlinear uncertain system
Krasovskii directional derivative along the closed-loopJ is generated by

system trajectories is given by (m (t) = fus ( () + fau(q(t), q(t — 7))

V (e, K(t), Ka(t)) +ZGs<i,j>(q(t>)uj<t>, t>0,

= V2 (a(0)[£u(a(®) + fas(a(t), (¢ — 7)) = i=1,m, (13)
+ Ga(t)G(a(t) (K (t) — Kg) F(a(t)) whereq = [q1, ¢\, o g g TIIT,
+ G(x(t))Ga(x(t) (Ka(t) — Kag) q0) = n6), -7 < 6 < 0, ¢ denotes the;*h

derivative of ¢;, and r; denotes the relative degree
Fa(z(t), z(t — T))} + Vaa(2(t)) — Vsa(z(t — 7)) with respect to the output. Here we assume that the
square matrix functioiis(¢) composed of the entries

e HJEHJT , so that (13) can be described as (1) with

+2tr QK () — KoY KT (1) Gs(ijy(@), 4,4 =1,---,m, is such thatlet Gs(q) # 0,
+2tr QM (Ka(t) — Kag) Yy 'K (t) q € R", where? = ry +- - -+, is the (vector) relative
_ T , degree of (13). Furthermore, since (13) is in a form
=0 (2(t), 2(t — 7))e(x(t), z(t — 7)) where it does not possess internal dynamics, it follows
_ / that# = n. The case where (13) possesses input-to-
o [(K(t) Kg) F(2(t))Vs (2(1)) G(2(1)) state stable internal dynamics can be handled as shown
C(;z:(t))} n tr{(Kd(t) — Kag)Fa(a()V/ (2(1)) in Hayakawaeet al. (June 2005). ]
. inez; 2 g g™ i = 1.,
Glal)Caelt)] - [0 - KYPa) N definer, & [ J = e
. (=1 . (rm=1) AT
V(@) Gl (t) Gla (1)) " eV anda £ o,
)

(
} - tr{(Kd(Tt) — Kag) i 2
)
)

f)= Ao o, st =Yz |

<0, t>0 (12) O(n—m)xm (14
=Y Y G(Z‘)—|: GS(‘T) :|,

which proves that the solutiofx(¢), K (t), Kq(t)) =

(0, Ky, Kqg) to (6), (7), and (9) is Lyapunov sta- where

ble. Furthermore, since the positive orpit (1(6), Ko, A 0

Kqo) is bounded and*(n(0), Ko, Kq0) belongs to a A= { 0 } . fulz) = [ Wm)xl} ,
compact subset af x R™*% x R™*sd (Hale 1969), Omxn ful)

it follows from Theorem 3.1 of Hale & Verduyn Lunel Ay € R*=m)x7 js 3 known matrix of zeros and ones

(1993, p. 143) th"’?f(ff(t)g ?(t — 7)) — 0ast — o0 capturing the multivariable controllable canonical form
forall n(-) € C. If, in addition, ¢* (2, zq)¢(x, z4) > 0,  representation (Chen 1984), : R* — R™ and
(z,2q) € R" X R™, (z,2q) # (0,0), then|lz¢|| — 0  f4, : R® x R — R™ are unknown functions such
ast — oo foralln() € C. U that £,(0) = 0 and f4,(0,0) = 0, and x4 denotes
the delayed value of. Here, we assume thgt,(x)

Remark 2.1. Note that in the case wheré'(z,z4) @ndfau(z,zq) are unknown and are parameterized as

L(z,2q) > 0, (x,29) € R” X R, (z,2q) # (0,0), fu@) = Ofu(x) and fau(z,24) = Oqfan(z,za),

the conditions in Theorem 2.1 imply tha(t) — 0 Wwhere f, : R" — R’ and satisfiesf,(0) = 0,

ast — oo and hence it follows from (6) and (7) that fdn R" x R" — R and satisfiegq,(0,0) = 0, and

K(t) — 0andK4(t) — 0 ast — oco. © € R™*7 and®y € R™*% are matrices of uncertain
constant parameters.

Remark 2.2. In the case wheré™ (z,zq)¢(z,zq) = Next, to apply Theorem 2.1 to the uncertain system
éT(I)é(x) > 0, (z,a:d) € R" x R", 7& 0, or (l) with fix), fd(x,xd), angG(x) given by (14), let
Yz, xa)l(x, xa) = €3 (za)la(xa) > 0, (z,24) € Ky € R™** andKg, € R™**¢, wheres = ¢ +r and

N . sS4 = qq + rq, be given by
R™ x R™, x4 # 0, where/ : R” — RP, we can also
conclude thafz,| — 0 ast — oo for all 5(-) € C. Ky =[6,—-0,®,], Kqg=[Oan — Oa; Pan],
(15)

It is important to note that the adaptive control lamwhere®, € R™*4, O4, € R"™*%, &, € R™*", and
(5)—(7) doesot require explicit knowledge of the gain &4, € R™*"4 are known matrices, and let
matricesk, andKyg; Theorem 2.1 simply requires the a N

existence ofK anéKdlg along with the construction F(z) = H Ei” Fy(x,zq) = Ugj Ei’ij”

of F(x), Fa(x,zq), G(z), Ga(x), V(x), and Ve (x) ' o

such that (2) holds. Furthermore, no specific structure

on the nonlinear dynamicg(x) is required to apply wherefn R" — R” and fa, : R" x R™ — R", with

Theorem 2.1. However, if (1) is in normal form with
asymptotically stable internal dynamics (Isidori 1995);" fa(0) = 0 and fau (0,0) = 0, are arbitrary functions.

then we can always construct functioRs: R* — R* I this case, it follows that, witlG(z) = Gq(z) =
and Fy : R® x R — R®, with F(0) = 0 and G 1(x),



fo(x) = f(2) + G(2)G(2) K F (x)

- ~ O ; — i
—A 8 (n—m)xm | ~—1 given by (14) and~s(z) = ByGn(x), whereB, is an
vt fule) + { Gs(7) ] (z) unknown symmetric matrix and the sign definiteness
P of B, is known. Assume there exist matricé§, <
[On/u(@) = Ofu(@) + ufu(w)] R™*®, Kqg € R™*%4, a continuously differentiable
~ O(n—m)x1 functlon V : R* — R, and continuous functions
= Az + ; (17)  V4:R" SR, F:R" - R®, Fy: R* x R" — R4,
Onfn(x) + Py fu(z)
and/ : R" x R® — RP such thatV,(-) and Vgs(+)
and are positive definite, radially unbounded,(0) = 0,

. ‘/;d(o) - O, Z(0,0) == 0, F(O) = 0, Fd(O)O = O,
Jas(@,2a) = Ja(@,2a) + Gl@)Ga(@)KagFalw,za) o0 2t Spa i & e (2) holds. Finally, let

e+ [0 R e e
“[Odn fan(z, 24) — O fan(z, za) u(t) = G (x(t) K (t)F(x(t))
+®ap fan (7, 70)| + G (@) Ka(t) Fa(a(t).x(t = 7)), (22)
{ O(n—m)x1 } whereK (t) € R™** andK4(t) € R™*54, with update
Odnfan(®, 24) + Pan fan (7, 24) (;1.8) Ii\;\ls R N
(t) = =3By Vi (x(t))F " (z(1))Y, (23)

Now, sinced,, € R4, @, € Rmxan, @, ¢ Rmxr,  Ka(t) = =3By VT (@(®) Ef (e(t), a(t — 7))Ya, (24)
and®g, € R™*"4 are arbitrary constant matrices andguarantees that the solutiof(t), K (t), Ka(t)) =

fo : R" — R” and fg, : R x R" — R" are arbitrary (0, K, Kag) of the closed-loop system given by (1),
functions, we can always construct, Kqg, F'(z),and  (22)_(24) is Lyapunov stable atﬂ(jm( ), z(t—7)) = 0
Fy(x,2q) such that (2) holds without knowledge of 5o, _, If, in addition, (T (z, z4)¢(z, zq) > 0

) ( ) d) ’

flx )andfd(x zq). In particular, choosm@nfn( )+ (z,24) € R® x R, (z,24) # (0,0), then|z;|] — 0

B, fulz) = Az andOqy fan (z, md)+<I>dnfdn(x zq) = ast — oo for alln(-) ecC.

Aqzq, whereA € R™*m and Aq € R™*™, it follows

;t]az (17)) and ;118) havE the Aform’([sz AT/]lTx.and Proof. The result is a direct consequence of Theo-

ds(Z,xq) = AdsTq, WNereAag = , IS In : A A _ 1

multivariable controllable canonical form anth, = :E;T: é(l)cl;(lrs)t Ieg((m))@? )Gd(TS = G (2) ]io
ATT i ) = . Z €r) = Z)Gd(T) = [Unx(n—m), Pul -

[On(n-m), A4]". Hence, choosingf.(x) Asz, Next, since@ and Q4 are arbitrary positive-definite

where A, is asymptotically stable and in multivariable ’ ¢ :
controllable canonical form, it follows that if there matrices, @ in (6) and Qd in (7) can be replaced

exists a positive-definite matrii that solves the linear Y @/Bul™" andga|Bu|™", respectively, wherg and
matrix inequality (LMI) feasibility problem qqa are positive constants arn@,| = B2) where
T ( )% denotes the (unique) positive-definite square root.
0> | P+ PAH R PAs | (19) Now, sinceB, is symmetric and sign definite it follows
AgP -R from the Schur decomposition tha, = UDp U7,

where U is orthogonal andDg, is real diagonal.
where R is a positive-definite matrix, then (2) is sat-Hence|B, | 'GT (2)GT (z) = |B,|'GY ()G™ (x) =
isfied with functionsVi(z) = 2" Pz andVia(z) = [0x(n_m): Zm] = B¢, whereZ,, = I,, for B, > 0
2T Rz. Alternatively, choosingdq = 0, any solution andZ,, = —I,,, for B, < 0. Now, (6) and (7), withyY’
P >0to0 = ATP + PA, + R satisfies the condition and qaYq replaced byY and Y, respectively, |mply
in Remark 2.2. In these cases, the update laws for t#é3) and (24), respectively.
adaptive controller (5) is given in the form

K(t) = —-QGT (2(t))GT (x(t)) Px(t)FT (2(t))Y, 3. DIRECT ADAPTIVE CONTROL FOR
(20) SECOND-ORDER SYSTEMS WITH UNKNOWN
TIME DELAY

Ka(t) = —QaGy (x())G™ (x(t)) Px(t) nthi _ hat _
T n this section we present a result that does not require

S Fq (2(t),2(t = 7))Ya. (21) knowledge of the delay amount Specifically, in this
section, we consider the nonlinear uncertain matrix

Next, we consider the case wheffer), fa(x, za), and  second-order delay dynamical system glven by (13)

G(x) are uncertain. Specifically, we assume tét)  with the relative degree given hy = =7, =
is such thatG(z) is unknown and is parameterized,, \\sith O P R PR

n mxXm - ) sym| - 3 y4m]
asGs(z) = ByCn(x), whereC, : R" - R 'S 2 [zT,23]7T, it follows that the state space

n andz =
known and satisfieset Gn(2) £ 0,2 € R andB, < representation is equivalently given by (1) with=

R™*™, with det B, # 0, is an unknown symmetric i
sign-definite matrix but the sign definiteness®f is 2m, f(@), fa(@,a), and G(z) g(l)ven[ Py (14). Rote

known; that is,B,, > 0 or B,, < 0. For the statement that A in (14) is given by4d =
T 0 Opy

. AN
of the next resuIAt defind, [Omx(”{m)’ In] " for assume thaf (z), fa(z,zq), andG(z) are uncertain,
By > 0,andBy £ [0x(n—m), —Im| for B, <O0. fu(z) is parameterized ag,(z) = Of.(z), where
fu : R?2™ — R? and satisfieg, (0) = 0,0 € R4 s
Corollary 2.1. Consider the nonlinear delay dynamicala matrix of uncertain constant parameters, gnd, -)
systemg given by (1) withf(z), fa(x,zq), andG(z) belongs taFy, where

} Here, we



R¥™ — R™ : f4,(0,0) =0, i(t) =
(25)

and~ > 0. Furthermore, as in Section 2 we similarly
assume thatz(z) is such that7;(z) is unknown and

Asx(t) + BOfdu(x(t)a x(t - T))
+ BoBu(K(t) — Kg) F(x(t)),
z(0) =n(0), —7<60<0, t>0.

Fa = {fd : Rzm X
f(}il(xvxd)fdu(xvxd) S ’Y_ng-rd}a
(30)

is parameterized a§(z) = B,G.(z), whereG,, :
R™ — R™*™ js known and satisfiedet G, (z) # 0,
rz € R", andB, € R™*™ with det B, # 0, is an

To show Lyapunov stability of the closed-loop system
(27) and (30) consider the Lyapunov-Krasovskii func-
tional candidatéd” : C x R™*™ — R given by

unknown symmetric sign-definite matrix but the sign

definiteness oB,, is known; thatisB, > 0or B, < 0.
For the statement of the next result defige(B,) = 1
for B, > 0, andsgn(B,) = —1 for B, < 0.

Corollary 3.1. Consider the nonlinear uncertain matrix-

second order delay dynamical systghgiven by (1)
with f(-), fa(-,-), andG(-) given by (14) andxs(z) =

B,Gy(x), wherefq(-,-) € Fq and By, is an unknown

symmetric matrix and the sign definiteness Bf is
known. LetF(z) £ [fT(z),2T)T, Y € R**° be a
positive-definite matrix, angd = [p2, p2]T € R? be a

positive vector; that isp12, po > 0. Then the adaptive

feedback control law

u(t) = G (@ () K () F (1)), (26)

whereK (t) € R™*(@+m) with update law

K(t) = —sgn(Bu)(p" @ Ln)a(t)F* (2(t))Y, (27)
guarantees that the solutigm(¢), K (t)) =
where K, € R™x(atm),
given by (1), (26), (27) is Lyapunov stable afd; | —

0ast — oo forall n(-) € C, fa(:) € Fq, and
T € [0,00).

(0, Kg),

Proof. First, letas = [as1, ass]T, as; < —2p12(1 +
Y2 (pls + 13)) (< 0), a5y < mm{ spomy (1 +F
4pty + 72 (pis +13)), — ﬁ( s105 +pia)} (< 0),
andp; = —as1p2 —

defineP 2 p1lm pr2lm A2
plZIm pQIm T

BO = [OnuIm]T.

it follows that

R2 —(ATP 4+ PA, + Ib,, + v 2PByB{ P)

OTVL I’UL ]

asllm aSQIm

andK, £ B;'[-0,al ® I,,]. Then

> —2as1p121m
— | —(p1 + as1p2 + asap12) I

—(p1 + as1p2 + asop12)Im
_(2]712 + as2p2)Im

+ )\max(IZm + 7_2PBOBOTP)IZm

S | 2as1p120m 0
- 0 —(2p12 + agap2)Im
+ Amax(L+ 720}y + 13)) Iom

> 0. (28)

Next, note that withu(¢) given by (26) it follows from
(1) that

&(t) = f(z(t) + fa(z(t), z(t — 7))
+ G(z(t)G
z(0) = n(0), —

or, equivalently,

5]
i
—
8
—
N =
IN =
o 2
o 3
SR
~ =
|\/\./
“O
)
)
©
N

of the closed-loop system

asop12 (> 0). Furthermore,

V. K) =" / W
+tr | Bu|(K — Kg)Y ™ (K _Kg) )
v()ecC, (31)
where|B,| = (B2)z and(-)z denotes the (unique)

positive-definite square roots. Note tHaty., K;) =

0, wherey(6) = 0,6 € [—T, 0]. Furthermore, since

p1 > 0 anddet P = —ag;p3 — asap1apz — ply >

—agp3 + —1— 2, =0,Pis
as1p3 + P12pa (aslpz + p12)p12P2 P12 )

positive definite and thus it follows that there exist class

K functionsay (+) andas(-) such that

V() K) = ar([(0)]]) + (|| K — Kglle).  (32)

Now, lettingz(¢) denote the solution to (30) and using

(25), (27), and (28), it follows that the Lyapunov-

Krasovskii directional derivative along the closed-loop
system trajectories is given by

V(w K (1)
—2:T(1)P [Asx(t) + Bofau(@(t), x(t — 7))
Ke)F(a(t)] + 2" (0)z(t)

(t —71)x(t —7)
+ 2t [ By|(K (1) — Ko)Y 'K (2)
=2 (t)(ATP 4 PA,)x(t)
+ 22T () PBy fau(z(t), z(t — 7))
ot [(K(t) — K,)F(x(t)2" (t)PBo By
+ 2T ()a(t) — 2T (t — T)a(t —7)
2t [(K (1) = Ko Fa()a™ (0" © Ln)"

- Bolsgn(B.)|Bull]
<a()(ATP + PA)a(t)

+~ 22" (t)PBy By Px(t)

+72 fau(a (), 2(t = 7)) fau (2 (1),

+ 2T ()z(t) — 2T (t — T)a(t — 7)
<zT(t)(ATP + PA, + Ly, + v 2PBy By P)x(t)

+2T(t—7)ot —7) — 2" (t — T)a(t —7)

+ BoBu(K(t) —

z(t—1))

=21 (t)Rx(t)
<0, t>0, (33)
which proves that the solutiofx(¢), K (¢)) = (0, K)

to (27) and (30) is Lyapunov stable. Furthermore since
R > 0, it follows from Theorem 3.1 of Hale & Ver-
duyn Lunel (1993, p. 143) thdt;|| — 0 ast — oo for
alln(-) € C, fa(-,-) € Fq, andr € [0, o). O
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4. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section we present a numerical example to
demonstrate the utility of the proposed direct adaptive
control framework for adaptive stabilization of non-

linear uncertain delay dynamical systems. Specifically,
consider the nonlinear uncertain delay dynamical sys-
tem given by

Adaptive gains

E(t) + p(2* () — ) 2(t) + Bsin(Az(t — 7))2(t) e
=bu(t), z(0)=n0), —7<6<0, t>0,(34)

... Fig. 3. Adaptive gain history versus time
wherepu, o, 8, A\,b € R are unknown. Note that with g P g y

x1 = z andzy = 2, (34) can be written in state spacethe case of matrix second-order nonlinear systems, the

form (1) withz = [z1,22]", f(z) = [2o, —u(xf — adaptive controller does not even require the knowl-
T —10. —Bsin(\ T and _ edge of the delay amount. Finally, an illustrative nu-

02|, fa(w, 2a) = [0, ~fsin(Az1)zay] 7, andG(z) = Tk example was presented fo show the utility of

T
[0,b] . Here, we assume thdlw) and fa(x) are un- 0 hronosed adaptive stabilization scheme.

known and f(x) can be parameterized g¥z) =
[22, 0129 + O22}25]", whered; andd, are unknown

constants. Note thaf;(z,7q) € Fq with vy = 371
Furthermore, we assume thégn b is known and- > 0 REFERENCES
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