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1. INTRODUCTION

Problems of stabilization of oscillating motions in
pendular systems are solved by using horizontal
movement of the pivot (Chung and Hauser, 1995;
Andrievsky et al., 1996; Fradkov, 1996; Frad-
kov and Pogromsky, 1998; Shiriaev et al., 1998;
Miroshnik and Bobtzov, 2000; Aracil et al., 2002)
or its vertical displacement (Fradkov et al., 1999;
Miroshnik and Olkhovskaya, 2003). Known con-
trol laws provide periodic motions of the pendu-
lums in the neighborhood of the lower position.
Nevertheless, under a high-frequency vertical ex-
citation of the pendulum support, one can observe
a complex periodic motion of the pendulum in
the vicinity of the upright position referred to as
induced or vibrational stability. The inverted pen-
dulum on vibrating support known as pendulum
of Kapitza was studied in a great number of scien-
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tific publications (see (Stephenson, 1908; Kapitza,
1951; Bogolyubov and Mitropolsky, 1962; Belman
et al., 1986; Blekhman, 1988; Yabuno et al., 2004))
and represents a considerable interest of the re-
searchers as a good benchmarks for many natu-
ral, technological and physical phenomena from
biological processes and vibrational technologies
to problems of anti-gravity.

Stability of the upper equilibrium point of free
(uncontrollable and conservative) model of Kapi-
tza pendulum leads to undamped low-frequency
oscillations of the pendulum around upright posi-
tion. However these oscillations are unstable and
their amplitudes depend on the pendulum initial
state. Stability of a given periodic motion of the
pendulum can be archived by using an auxiliary
vertical motion of the support and the energy-
based control developed for ”normal” pendulum
with vertically moved support (Fradkov et al.,
1999; Miroshnik and Olkhovskaya, 2003; Mirosh-
nik and Odinets, 2004). The main difficulties of
this solution are connected with separating in-



formation about slow motion of the pendulum
(Odinets and Levidova, 2004).

In this paper we introduce the concept of virtual
energy of Kapitza pendulum associated with en-
ergy of slow motion of an inverted pendulum with
opposite gravity direction and propose an energy-
based approach to the problem of stabilization of
the given periodic motions. The problem is re-
duced to control of the virtual energy and implies
estimating the pendulum’s slow motions provided
by a nonlinear observer of the slow oscillations and
virtual energy. New simulation results are repre-
sented to confirm the main theoretical aspects of
the solution.

The paper is organized as follows. Models of
pendulum with vertical vibration of the pivot
and their properties are represented in Section 2.
In Section 3, we introduce the virtual energy of
Kapitza pendulum, derive a model of the slow
motion and, on this basis, design a nonlinear
observer of the energy. In Section 4 the problem of
control of Kapitza pendulum oscillations is solved
as that of stabilization of the virtual energy by
using an appropriate nonlinear observer.

2. MODELS OF PENDULA AND PIVOT
EXCITATION

Fig. 1. Pendula with mobile supports

We consider a model of a pendulum on the mobile
support written in the Hamiltonian form

Jq̇ = p, ṗ = −∂Π
∂q

+ G(q)u, (1)

where q is the generalized coordinate (angle),
p = Jq̇ is the momentum, u is the control action,

J = ml2, Π(q) is the potential energy, G(q) is a
function. The total energy (Hamiltonian function)
of the unforced pendulum is computed as

E(q, p) = Π(q) + T (p) = Π(q) +
1
2J

p2, (2)

where T (p) is the kinetic energy.

When the pivot accomplishes vertical motion (see
Fig.1,a),

Π(q) = mgl(1− cos q),

G(q) = −ml sin q,

and equation (1) takes the form

Jq̇ = p, ṗ = −mgl sin q −ml sin q u. (3)

Problems of control of oscillations are usually
associated with keeping up a required mode of
the undamped periodic pendulum motion. Tak-
ing into account that the mode of oscillations
is connected with a certain level of pendulum
internal energy (Andrievsky et al., 1996; Fradkov
and Pogromsky, 1998; Fradkov et al., 1999), the
problems are reduced to those of energy stabiliza-
tion. The latter is a standard nonlinear problem of
partial stabilization of a dynamical system, or sta-
bilization with respect to the function E = E(q, p)
(Fradkov et al., 1999).

It is worth to note that the unforced pendulum
(3) has two equilibrium points. The first one
(q, p) = (0, 0) corresponds to the lower position of
the pendulum and is asymptotically stable. The
other points (q, p) = (±π, 0) associated with the
upright position, are unstable and, in the case
considered, cannot be stabilized by using standard
control techniques. The same situation is observed
in pendulum oscillations. Energy-based control
provides stable oscillation around the lower point,
corresponding to a given energy level

E∗ < Em = 2mgl.

If E∗ > Em, the pendulum demonstrates pro-
portional rotation around the pivot. Oscillations
of the pendulum around the upper position are
impossible without special pivot excitation.

High-frequency vertical vibration of the support
(see Fig. 1b) essentially changes properties of the
pendulum (Stephenson, 1908; Kapitza, 1951; Bo-
golyubov and Mitropolsky, 1962; Belman et al.,
1986; Blekhman, 1988; Yabuno et al., 2004). Un-
der the relevant conditions, the open loop pendu-
lar system known as Kapitza pendulum becomes
stable (or asymptotically stable) with respect to
the upper equilibriums (q, p) = (±π, 0). This
property is a crucial point to the problem of
the control of pendulum oscillations around the
upright position.



Consider a pendulum under a high-frequency ver-
tical excitation of the pivot, when the coordinate
of the support s is described by the equation

s̈ + ω2s = 0, (4)

where s(0) = s0, ṡ(0) = ṡ0, ω is a frequency of
vibration, or

s(t) = A sin(ωt + ϕ),

where A = A(s0, ṡ0), ϕ = ϕ(s0, ṡ0). This mode is
provided by the control

u = s̈ = −ω2s. (5)

Substituting (5) into the model (3), one obtains

Jq̇ = p, ṗ = −ml(g − ω2s) sin q. (6)

If the frequency ω is large enough and the ampli-
tude is relatively small, the solution of system (6)
is approximately represented by a two-frequency
signal of the form (Bogolyubov and Mitropol-
sky, 1962; Blekhman, 1988)

q ∼= q − s̃ sin q. (7)

Here

s̃(t) =
ml

J
(s− s0) (8)

is a fast component of the oscillations, and q(t)
is a slow component, being, in turn, a solution of
the equations

Jq̇ = p, ṗ = −m(gl +
θω2A2

2
) sin q, (9)

where

θ = 1 if |q| < π

2
, θ = −1 if

π

2
< |q| < 3π

2
.

When

ω2A2 > 2gl (10)

equation of slow motion (9) can be rewritten as

Jq̇ = p, ṗ = −θml2ω2 sin q, (11)

where

ω =

√
2gθl + ω2A2

2l2
, (12)

or in the form

q̈ + θω2 sin q = 0. (13)

The latter shows that the system acquires two
stable equilibriums (q, p) = (0, 0) and (q, p) =
(±π, 0), and the pendulum can accomplish ”slow”

Fig. 2. Free oscillations around upper position

oscillations around the upper (Fig. 2) or lower
positions.

Thus, under the high-frequency excitation of the
pivot, the equilibrium points (q, p) = (±π, 0) be-
come stable that enable one, by using appropriate
control actions, to provide the required stable slow
oscillations of the pendulum around the upright
position.

3. VIRTUAL ENERGY AND NONLINEAR
OBSERVER

The problem of stabilization of Kapitza pendulum
oscillation around upper position can be reduced
to that of energy stabilization. This implies the
use of a concept of virtual energy (Miroshnik and
Odinets, 2004) and estimation of the slow motion
variables q and p.

Consider the Kapitza pendulum motion in a
neighborhood of the upright position, where
π/2 < |q| < 3π/2 and θ = −1. Introduce virtual
gravity acceleration

g =
ω2A2

2l
− g > 0,

turned to the opposite direction with respect to
the gravity, and virtual energy of slow motion as

E(q, p) = Π(q) +
1
2J

p2, (14)

where

Π(q) = mgl(1 + cos q). (15)



is the virtual potential energy. Note that Π(q) ≥ 0
in the neighborhood of the upright position and
Π(±π) = 0. Then the model of the pendulum
system (11) can be rewritten as

Jq̇ = p, ṗ = −∂Π
∂q

. (16)

The latter is equivalent to a description of the
free motion of the ordinary pendulum (see (1) for
u = 0).

In order to estimate the current value of the
virtual energy (14), it is necessary to separate the
signals q and p from the measurable two-frequency
signal q. This is realized by using the nonlinear
observer, the structure of which is similar to the
pendulum model (16),(7) (see also (Odinets and
Levidova, 2004)):

Jq̇e = pe + ue1, ṗe = − ∂Π
∂qe

+ ue2, (17)

qe = qe − s̃ sin qe, (18)

where qe, pe, qe are the estimates of the relevant
variables, ue1, ue2 are the observer feedback sig-
nals to be found.

Introduce the errors of the observer (residuals)

q̃e = q − qe, p̃e = p− pe,

q̃ = q − qe (19)

and note that the error q̃ is measurable and can be
used for feedback design. For small enough errors,
one can obtain the linearized error model

J ˙̃qe = p̃e − ue1, ˙̃pe = − α(qe)q̃e − ue2, (20)

q̃ = (1− s̃)q̃e, (21)

where

α(qe) =
∂2Π(qe)

∂q2
e

.

Then, taking into the account that, for small A,
|s| < 1, we choose the observer feedbacks as

ue1 = J
k1

1− s̃
q̃, (22)

ue2 =−α(qe)q̃e + J
k2

1− s̃
q̃, (23)

where k1 > 0, k2 > 0 are the feedback gains. It
is easy to check that the choice of the feedbacks
leads to the linear error model

q̈e + k1q̇e + k2qe = 0. (24)

The latter shows that qe → 0 as t → ∞, and,
therefore, proves the asymptotic convergence of
the estimates qe, pe to the real values q, p.

Now, the require estimate of the virtual energy is
found as

Ee = E(qe, pe) = Π(qe) +
1
2J

p2
e, (25)

where

Π(qe) = mgl(1 + cos qe), (26)

and Ee → E as t →∞.

The validity of the result is confirmed by sim-
ulation. The pendulum with parameters m =
0.005 kg, l = 5 cm and pivot vibration s =
0.25 sin 400t (cm) is considered. Fig. 3 illustrates
the perfect convergence of the estimates of slow
processes of pendular system qe, pe and Ee to the
real values q(t), p(t) and E.

Fig. 3. Estimation of slow motions

4. STABILIZATION OF OSCILLATIONS OF
INVERTED PENDULUM

Now, consider the controlled motion of the vibrat-
ing pendulum with respect to the upright position,
supposing that condition (10) is satisfied. Such a
motion is provided by the control

u = s̈ + u, (27)

where u is the stabilizing signal. The model of slow
motion of the pendulum in the neighborhood of
the upright position π/2 < |q| < 3π/2 takes the
form

Jq̇ = p, ṗ = mlg sin q −ml sin qu. (28)



We introduce the virtual energy of the pendulum
in the form (14) and rewrite the model (28) as

Jq̇ = p, ṗ = −∂Π
∂q

+ G(q)u. (29)

where
G(q) = −ml sin q.

Such as a desired mode of pendulum oscillations
is associated with a certain level of its virtual
energy, the control problem is reduced to that
of energy stabilization mentioned in Section 2.
The latter is a standard nonlinear problem of
partial stabilization of a dynamical system, or
stabilization with respect to the function E =
E(q, p) (Fradkov et al., 1999).

Let us set a desired energy level E
∗

and introduce
the energy error (deviation)

ξ = E(q, p)− E
∗
. (30)

After simple manipulations, we obtain the error
model

ξ̇ =
1
J

pG(q) u. (31)

A stable solution of the problem is given by
different control laws of the form

u = − J U(p, G(q)) kξ, (32)

where k > 0 is a feedback gain. Substituting (32)
into (31), one obtains

ξ̇ = −pGU(p,G(q)) kξ. (33)

We can conclude that the system is asymptotically
stable with respect to the given partial equilib-
rium point E = E

∗
when the function U(p,G),

for all t > 0, satisfies the inequality

t∫

0

pGU(p,G(q))dτ ≥ λt, (34)

where λ > 0. It is easily seen, for instance, that
the problem is solved by the stabilizing control
laws

u =−J sign(pG) kξ,

u =−JpG kξ.

In order to estimate the current value of the
virtual energy, a nonlinear observer of slow motion
is designed by analogy with that of represented in
Section 3. Taking into the account the structure
of the system (29), we design the observer in the
form

Jq̇e = pe + ue1,

ṗe =− ∂Π
∂qe

+ G(qe)u + ue2, (35)

qe = qe − s̃ sin qe. (36)

The observer feedbacks are chosen as

ue1 = J
k1

1− s̃
q̃, (37)

ue2 =−α(qe)q̃e + β(qe)q̃eu + J
k2

1− s̃
q̃, (38)

where

β(qe) =
∂G(qe)

∂qe

,

k1 > 0, k2 > 0. It is easy to check that the
choice of the feedback leads to the error model
(24) that proves the asymptotic convergence of
the estimates qe, pe to the real values q, p.

Then the require estimate of the virtual energy
is found in the form (25)-(26) and the control is
formed as

u = − J U(pe, G(qe) kξe, (39)

where

ξe = E(qe, pe)− E
∗
. (40)

The validity of the result is confirmed by sim-
ulation. The pendulum with parameters m =
0.005 kg, l = 5 cm and pivot vibration s =
0.25 sin 400t (cm) is considered. The observer-
based control law

u = J sign(pe sin qe)kξe

provides stabilization of the virtual energy E at
the levels E

∗
from 0 to 0.056, which corresponds

to stable oscillations of the pendulum around the
upper position at the amplitudes up to 0.95 rad.
Fig. 4 illustrates the convergence of the processes
for different initial states of the pendulum when
the desired virtual energy E

∗
= 0.005, and the

oscillation amplitude is 0.22 rad.

5. CONCLUSION

Models of Kapitza pendulum and their properties
were analyzed by using the concept of virtual
energy. The problem of stabilization of a given
periodic motion of the pendulum around the up-
right position was reduced to stabilization of the
virtual energy and solved by standard techniques
of energy-based control. In order to estimate the
slow variables of the system and its virtual energy,
a nonlinear observer of the vibrating pendulum
was designed. The simulations confirmed the va-
lidity of the results.



Fig. 4. Stabilization of oscillations around upper
position
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