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Abstract: An iterative learning scheme for the tracking control of robot manipula-
tors without velocity measurement is presented. The proposed learning algorithm
is anticipative (noncausal) in the sense that it utilizes “future” values of the
tracking error obtained during the previous iteration. Also, the standard resetting
assumption is relaxed to the form of δq-resetting assumption. The proposed
algorithm ensures convergence of the tracking error to a prescribed small domain
in finite number of iterations, uniformly in time. Some experimental results on
a six-degrees-of-freedom (6-DOF) robot manipulator are presented to show the
effectiveness of the proposed algorithm. Copyright c©2005 IFAC
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1. INTRODUCTION

Robot manipulators are generally used in manu-
facturing industries to execute a given task repeat-
edly over a finite time interval. Therefore, Itera-
tive Learning Control (ILC) is a suitable control
technique candidate for this kind of applications.
In the past two decades several ILC schemes for
robot manipulators have been proposed in the
literature. In particular, ILC schemes that are
based upon the contraction mapping theory have
been proposed in (Arimoto et al., 1984; Arimoto,
1996; Bondi et al., 1988; Casalino and Bartolini,
1984; Craig, 1984; De Luca et al., 1992; Horowitz,
1993; Kavli, 1992; Kawamura et al., 1988; Moon et
al., 1997). On the other hand, another relatively
recent type of ILC algorithms has been devel-
oped using Lyapunov and Lyapunov-like meth-
ods (Choi and Lee, 2000; Kuc et al., 1991; Ham
et al., 2000; Xu et al., 2000). Recently, some
ILC schemes for the position tracking problem
of rigid robot manipulators have been proposed
in (Tayebi, 2004; Polushin and Tayebi, 2004).

These control schemes are build around a classical
PD feedback structure, for which an iterative term
is added in order to ensure asymptotic conver-
gence along the iteration axis.

In this paper, a new iterative learning scheme
for the tracking control of robot manipulators is
presented. An essential feature of this iterative
learning scheme is that the learning algorithm
proposed is anticipative in the sense that it uti-
lizes “future” values of the tracking error obtained
during the previous iteration. This anticipative or
noncausal feature provides an important advan-
tage of ILC over conventional feedback control
schemes. Another interesting feature of the results
presented is that the resetting assumption, which
is standard in most ILC schemes, is relaxed to the
form of δq-resetting assumption. More precisely,
instead of assuming that the initial condition is
strictly determined, the same for each iteration
and located on desired trajectory, we only assume
that the initial states for all iterations are located
in some sufficiently small neighborhood of a given



point. We first provide a general result (Theo-
rem 1) where the convergence properties of the
proposed algorithm are proved under the assump-
tions that include, among others, the availability
of appropriate estimates for the joint velocities.
We would like to emphasize that the proposed
ILC scheme allows us to use different velocity
estimates in the PD-type control algorithm and in
the iterative learning algorithm. The main reason
for using two different velocity estimates is based
on the fact that the proposed control algorithm
requires an on-line estimate of the current joint
velocities in contrast with the learning algorithm
that calculates the learning term during the k-th
iteration based on measurements obtained at the
k−1-th iteration only. Therefore, in the latter case
all the necessary calculations can be performed
off-line between iterations. Thus, one may take
advantage of using off-line numerical methods to
obtain a possibly smoother velocity estimate in
order to avoid the “accumulation of noise” in
the learning term. Further, Theorem 2 presents
a special case of the result described above, where
a simple “dirty derivative” filter is utilized to
obtain the velocity estimates for both control and
learning algorithms. In this special case we show
that the convergence properties of the proposed
scheme can be proved, if the level of measurement
disturbances is low, and the cut-off frequency of
the “dirty-derivative” filter is high enough. The
proposed algorithm has been implemented and
tested on a 6-DOF robot manipulator CRS A465.
The experimental results obtained confirm good
convergence properties of the proposed algorithm.
In particular, we have shown that the anticipative
feature provides some additional improvement to
the performance.

The paper is organized as follows. In section 2,
the necessary preliminary materials are provided.
Main results of the paper are formulated in Sec-
tion 3. Experimental results are presented in Sec-
tion 4. Finally, some well-known properties of
Euler-Lagrange equations of robot manipulators
are summarized in Appendix A.

2. PRELIMINARIES

Let k ∈ {0, 1, . . .}. An n degree of freedom rigid
fully actuated manipulator during can be de-
scribed by Euler-Lagrange equations of the fol-
lowing standard form

M (qk) q̈k + C (qk, q̇k) q̇k + G (qk) = τk + d. (1)

Here qk(t) ∈ Rn, q̇k(t) ∈ Rn are vectors of
generalized coordinates and generalized velocities
respectively, where k ∈ {0, 1, . . .} is the iteration
number, and t ∈ [0, T ], T > 0 is the duration of
each iteration. Also, τk ∈ Rn is the vector of exter-
nal forces, M (qk) ∈ Rn×n, C (qk, q̇k) ∈ Rn×n, and

G (qk) ∈ Rn are smooth matrix-valued (vector-
valued) functions of their arguments, M (qk) rep-
resents the inertia matrix of the manipulator,
C (qk, q̇k) q̇k is the vector of centrifugal and Cori-
olis forces, and G (qk) is the vector of potential
forces. Equation (1) has several well-known prop-
erties that are summarized in Appendix A.

In this paper, we address a problem of tracking
a trajectory that is repeated over a given oper-
ation time. Throughout the paper, the following
assumptions will be used.

Assumption 1. The reference trajectory qd(·) ∈
C2[0, T ] (i.e., qd(t) is twice continuously differen-
tiable on [0, T ]).

In particular, this assumptions implies that, given
a reference trajectory qd(·), there exist nonneg-
ative constants qd max, q̇d max, q̈d max such that
sup

t∈[0,T ]

|qd(t)| = qd max, sup
t∈[0,T ]

|q̇d(t)| = q̇d max, and

sup
t∈[0,T ]

|q̈d(t)| = q̈d max.

Assumption 2. The disturbances d(t) are iteration-
invariant and uniformly bounded on [0, T ] by some
bound kd > 0, i.e.,

sup
t∈[0,T ]

|d(t)| ≤ kd.

Note that the assumption that disturbances are
iteration invariant is technical. We need it to
guarantee that the acceptable performance can be
achieved in a certain number of iteration.

Assumption 3. The joint position of the manipula-
tor is available for measurement subject to (small)
measurement disturbances. More precisely, let q̄k

denote a measured error defined as follows

q̄k(t) = q̃k(t) + ∆qk
(t) , (2)

where q̃k = qd − qk, and ∆qk
(·) are measurement

disturbances at the k − th iteration. For all k ∈
{1, 2, . . .}, the measurement disturbances ∆qk

(·)
are assumed to be absolutely continuous on [0, T ].

We propose the following PD-type control algo-
rithm

τk(t) = KP q̄k(t) + KDνk(t)

+ θ̂k(t)
(

νk(t) +
νk(t)

max {σ, |νk(t)|}

)
,

(3)

with θ̂0(t) ≡ 0, where KD, KP ∈ Rn×n are
symmetric positive definite matrices, σ > 0 is
a constant, νk(·) is a velocity error estimate ob-
tained from the joint position measurement dur-
ing k-th iteration, and θ̂k(·) : [0, T ] → R+, k ∈
{0, 1, 2, . . .}, is an iteratively learned function. For
each iteration k ∈ {1, 2, . . .} and each t ∈ [0, T ], a
learning algorithm is either



L1 : θ̂k(t) := max

{
θ̂k−1(t),

min
{
θ̂k−1(t), θ∗

}
+ γ sup

s∈[t−τb,t+τf ]
⋂

[0,T ]

Wk−1(s)

}
,

(4)
or

L2 : θ̂k(t) := θ̂k−1(t), (5)

where

Wk−1(s) := |wk−1(s)|2+
|wk−1(s)|2

max {σ, |wk−1(s)|}
, (6)

and wk−1(·) is an estimate for the joint velocity
error ˙̃qk−1(·), τb ≥ 0, τf ≥ 0 are constants that
determine the size of the “time window” of the
learning algorithm, γ > 0 is a learning gain,
and θ∗ > 0 is a sufficiently large constant. More
precisely, θ∗ should be chosen to satisfy θ∗ ≥ 2β+
α, where

α = kcq̇d max (7)

β = λmax (M) q̈d max + kcq̇
2
d max + kg + kd, (8)

where parameters λmax (M), kc, kg are defined in
Appendix A.

Remark 1. Algorithm (4) can be rewritten in
th following (longer but somewhat simpler to
understand) form:

i) If θ̂k−1(t) ≤ θ∗, then

θ̂k(t) := θ̂k−1(t) + γ sup
s∈[t−τb,t+τf ]

⋂
[0,T ]

Wk−1(s);

ii) If

θ∗ ≤ θ̂k−1(t) ≤ θ∗ + γ sup
s∈[t−τb,t+τf ]

⋂
[0,T ]

Wk−1(s),

then

θ̂k(t) := θ∗ + γ sup
s∈[t−τb,t+τf ]

⋂
[0,T ]

Wk−1(s);

iii) If

θ̂k−1(t) ≥ θ∗ + γ sup
s∈[t−τb,t+τf ]

⋂
[0,T ]

Wk−1(s),

then
θ̂k(t) := θ̂k−1(t). •

Remark 2. Note that we use different notations
ν(·) and w(·) for the velocity error estimates used
in the control algorithm (3) and the learning
algorithm (4) respectively. By doing so, we would
like to emphasize that these two estimates may
be different and, in particular, may be obtained
by using different methods. Indeed, in the control
algorithm (3) we need the information about
the current velocities, therefore the estimation
process for vk(·) has to be done on-line. On the
other hand, the learning algorithm (4) utilizes

only the information about velocity error during
the previous iteration, therefore the estimation
process for wk−1(·) can be done off-line between
the k − 1-th and k-th iterations. Thus, one may
take advantage of using a variety of numerical
methods to obtain an appropriate velocity error
estimate wk−1(·). Specifically, from the practical
point of view it seems to be particularly important
to use a smooth enough estimate wk−1(·) in order
to avoid “accumulation of noise” in the learning
term θ̂k (·). •

Remark 3. If τf > 0 in (4), we see that, for
given iteration k ∈ {1, 2, . . .} and time instant
t ∈ [0, T ], algorithm (4) utilizes “future” (with
respect to t) values of estimate wk−1(·) for the
velocity during the previous iteration k−1. In this
sense, algorithm (4) has anticipative (noncausal)
nature with respect to time axis. •

A simple switching rule between algorithms L1

and L2 can be described as follows. For each
k ∈ {1, 2, . . .}, let us denote by Ck a learning
algorithm which is applied to the system at the
k-th step (i.e. which is used to calculate θ̂k(·)).
Thus, Ck is “equal” to either L1 or L2. We propose
the following switching rule:

Ck =

{
L1 if min

j∈{0,1,...,k−1}
sup

t∈[0,T ]

|wj(t)| > υ0/2;

L2 otherwise,
(9)

where υ0 > 0 is a constant to be determined. The
switching algorithm (9) can be simply interpreted
as follows: if during some iteration k ∈ {0, 1, . . .}
we have sup

t∈[0,T ]

|wk(t)| ≤ υ0/2, then the learning

process is stopped, and we have θ̂i(t) = θ̂k(t) for
all t ∈ [0, T ] and all i ∈ {k, k + 1, . . .}.

3. MAIN RESULTS

Our first result is presented below.

Theorem 1. Consider the system (1), (3), (4) (5),
(9), and suppose Assumptions 1 – 3 are satisfied.
Given ε > 0, there exist σ∗ > 0, δq > 0, ∆∗ > 0,
ν∗ > 0, and w∗ > 0 such that if

i) the constant υ0 in (9) satisfies υ0 ≤ max
{
ε, ε

T

}
;

ii) the constant σ in (3), (6) satisfies σ ∈ (0, σ∗];

iii) the following δq-resetting assumption

max
{
|q̃k(0)| ,

∣∣ ˙̃qk(0)
∣∣} ≤ δq (10)

holds for all k ∈ {0, 1, 2, . . .};

iv) the measurement disturbances satisfy

sup
t∈[0,T ]

|∆qk
(t)| ≤ ∆∗ for all k ∈ {0, 1, 2, . . .} ,

(11)



v) the estimates νk(·), wk(·) satisfy

sup
k∈{0,1,2,...}

sup
t∈[0,T ]

∣∣νk(t) − ˙̃qk(t)
∣∣ ≤ ν∗,

sup
k∈{0,1,2,...}

sup
t∈[0,T ]

∣∣wk(t) − ˙̃qk(t)
∣∣ ≤ w∗,

(12)

then the closed-loop system (1), (3), (4) (5), (9)
has the following properties:

a) trajectories of the closed loop system are uni-
formly bounded for all k ∈ {0, 1, 2, . . .}, i.e., there
exists Q∗ ≥ 0 such that

sup
k∈{0,1,2,...}

sup
t∈[0,T ]

max
{
|q̃k(t)| ,

∣∣ ˙̃qk(t)
∣∣} ≤ Q∗;

b) there exists k∗ ∈ {0, 1, . . .} such that

sup
k∈{k∗,k∗+1,...}

sup
t∈[0,T ]

max
{
|q̃k(t)| ,

∣∣ ˙̃qk(t)
∣∣} ≤ ε,

and

θ̂k(·) ≡ θ̂k∗(·) for all k ∈ {k∗, k∗ + 1, . . .} . •

Below we will also investigate a special case of
Theorem 1 where both the estimates νk(·), wk(·)
are equal to each other and obtained by using a
simple “dirty-derivative” filter of the form

Tf (s) =
ρs

s + ρ
, (13)

where ρ > 0 is a constant to be determined. Thus,
νk(·) and wk(·) can be defined in the Laplace
domain as follows

νk(s) := wk(s) := Tf (s)q̄k(s). (14)

Let the initial condition of the filter (14) in the
time domain be νk(0) = wk(0) = 0. For such
defined estimates, one can show that assumption
v) of Theorem 1 is actually satisfied, if the cut-
off frequency of the filter is high enough. Con-
sequently, one can state a modified version of
Theorem 1 as follows.

Theorem 2. Consider a system (1), (3), (4) (5),
(9), (14) under Assumptions 1 – 3. Given ε > 0,
there exist ρ∗ > 0, σ∗ > 0, δq > 0, and ∆∗ > 0,
such that if assumptions i)-iv) of Theorem 1 are
satisfied, and, additionally, the constant ρ in (13)
satisfies ρ ≥ ρ∗, then the closed-loop system has
the properties a), and b) of Theorem 1.

4. EXPERIMENTAL RESULTS

In this section, we present some results of ex-
perimental evaluation of the iterative learning
control algorithm (3), (4). The algorithm pro-
posed in this paper has been implemented and
evaluated on a 6-DOF robot manipulator CRS
A465OA (see figure 1). The CRS465 is an open-
chain articulated robot arm with 6 revolute joints

powered by 6 motors. The iterative learning con-
trol algorithm proposed can be implemented us-
ing Quanser open architecture (OA) mode. For
the real-time implementation of the control algo-
rithm using the Quanser open architecture mode,
WinCon software is used together with MAT-
LAB/Simulink/Realtime Workshop/Control Sys-
tem Toolbox as well as Visual C++ Professional.

Fig. 1. CRS A465OA Robotic Manipulator

The reference trajectory traces an ellipse in the
horizontal (X-Y) plane, described by the following
equations

x(t) = X0 (1 − cos (2π · 0.1t)) ,
y(t) = Y0 (sin (2π · 0.1t)) ,
z(t) ≡ Z0,

where X0 = 100 mm, Y0 = 150 mm, and Z0 = 70
mm. The reference trajectories for pitch, yaw, and
roll of the end-effector are set to be constantly
equal to zero.

The parameters of algorithm (3), (4), are chosen
as follows: KD = 0.5·I6×6, KP = 0.5·I6×6, γ = 10,
σ = 1. The estimate ν in (4) is obtained using
a “dirty-derivative” filter of the form (13), (14),
with ρ = 0.5 rad/sec. On the other hand, the
estimate w in (4) is also obtained using a dirty-
derivative filter of the form (13), (14) where, for
the sake of using a possibly smoother signal to
avoid the “accumulation of noise” in the learning
term, the cut-off frequency is decreased to ρ =
0.2rad/sec.

Below we present the results of two sets of exper-
iments. In the first set, we put τf = τb = 0 in (4),
i.e., the learning control algorithm implemented
does not have anticipative properties. On the
other hand, in second set of experiments, we put
τb = 0, τf = 1, which means that the algorithm
has anticipative feature with anticipatory time 1
sec. The results of these two sets of experiments
are shown in figures 2–4. In particular, figure 2
represents the desired trajectory as well as the
actual trajectories at 1st and 20th iterations for
the algorithm with τf = 0, while in figure 3 the



same are shown for the algorithm with τf = 1
sec. To estimate convergence properties of the
algorithms, for each iteration k ∈ {1, 2, . . . , 20},
the supremum norm of sum of all joint tracking
errors is calculated using the following formula

esum
k = sup

t∈[0,20 sec]

(
6∑

i=1

∣∣q̃i
k(t)

∣∣
)

,

where q̃i
k(t) is the tracking error of i-th joint,

i ∈ {1, 2, . . . , 6}, at time t ∈ [0, 10sec]. The plots
of esum

k vs. iteration number for both the cases
τf = 0 and τf = 1 sec are shown in figure 4. We
see that in the both cases, the algorithm proposed
provides good uniform convergence of the actual
trajectory to the desired one along the iteration
axis. However, the use of anticipatory feature
provides some improvement to the convergence
properties.
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Fig. 2. Experimental results for τf = 0: the desired
trajectory and the actual trajectories at 1st
and 20th iterations

5. CONCLUSIONS

In this paper, an iterative learning control scheme
for robot manipulators without velocity measure-
ment has been presented. The proposed learning
algorithm is anticipative (noncausal) in the sense
that “future” values of the tracking error obtained
during the previous iteration are used to calculate
the learning parameter. Also, the structure of the
algorithm proposed makes it possible to use off-
line estimation of the velocity error, which may
lead to better performance of the learning process.
The proposed algorithm has been implemented
and tested on 6-DOF robot manipulator CRS
A465. Experimental results are provided that con-
firm good convergence properties of the proposed
algorithm. In particular, we have demonstrated
that additional improvement of the convergence
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Fig. 3. Experimental results for τf = 1 sec: the
desired trajectory and the actual trajectories
at 1st and 20th iterations
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Fig. 4. Experimental results: esum
k vs. number of

iteration k for algorithms with τf = 0 and
τf = 1 sec

properties of the iterative learning algorithm can
be achieved by using the anticipative property of
the proposed algorithm.
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APPENDIX A. PROPERTIES OF
EULER-LAGRANGE EQUATIONS 1

The following properties of the dynamical model
(1) are well-known and utilized in the paper.

Property 1. The inertia matrix M(q) is sym-
metric, positive definite, and globally uniformly
bounded

λmin (M) ≤ |M(q)| ≤ λmax (M)

for all q ∈ Rn, where λmin (M), λmax (M) are
positive constants.

Property 2. The matrix Ṁ(q)−2C (q, q̇) is skew-
symmetric.

Property 3. The matrix C (q, q̇) satisfies

|C (q, q̇)| ≤ kc |q̇|

for some kc > 0, and for all q, q̇ ∈ Rn.

Property 4. The vector of potential forces G (q)
is globally uniformly bounded, i.e.,

|G(q)| ≤ kg

for some kg > 0, and for all q ∈ Rn.


