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Instituto de Ingenieŕıa, UNAM, Automatización, Cd.
Universitaria, C.P.04510 México D.F., MEXICO,
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Abstract: Recently there has been an intense activity in designing observers by
means of the circle criterion. However, it is known that the use of Popov’s criterion
reduces the conservativeness of stability analysis based on the circle criterion, if
further restrictions are satisfied by the nonlinearity. It is shown in this paper
that Popov’s criterion can indeed be used with advantage for observer design,
reducing the restrictions of previous designs. Although only the scalar case will
be considered here, it is possible to extend the results to a multivariable setting.
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1. INTRODUCTION

An intensive research activity has been done in
the last years aiming at developing design strate-
gies for nonlinear observers, and different methods
have been proposed (Misawa and Hedrick, 1989;
Nijmeijer and Fossen, 1999). Recently (Arcak and
Kokotovic, 1999; Fan and Arcak, 2003) have pro-
posed the use of the circle criterion for the design
of nonlinear observers, when the estimation error
of the observer can be decomposed in a linear
dynamical subsystem and a nonlinear static feed-
back, i.e. the class of Lur’e systems. The influence
of the plant’s dynamics on the error equation
enters through the nonlinear term, that has to be
considered as time-varying, and the time variance
is dependent on the plant’s trajectory. The ba-
sic design idea consists in proposing a quadratic
Lyapunov function for the error equation, and to
check if this can be so selected that the non-
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linear part does not destroy the stability of the
equilibrium point. This is the idea of the classi-
cal circle criterion (Khalil, 2002). This basic idea
can be further generalized in different directions
(Moreno, 2004a; Moreno, 2004b).

It is a classical result, that if the nonlinearity
is time invariant the conditions of the Popov
criterion are much weaker than those of the circle
criterion, leading to less restrictive conditions.
From a Lyapunov function perspective the novelty
of the Popov criterion is the use of a Lur’e type
of Lyapunov functions that consist of a quadratic
term plus the integral of system’s nonlinearity.
This extended class of Lyapunov functions allows
a weakening of the stability conditions.

However, the use of the classical Popov criterion
for observer design is impossibilited by the fact
that the nonlinearity in the error equation is
always time-varying, whereas Popov criterion is
only valid for time invariant nonlinearities. This
is maybe the reason why it has not been yet used
for this objective.



The objective of this work is to show that, despite
of the difficulty, it is possible and advantageous
to use an extended Popov criterion for the de-
sign of nonlinear observers for a class of nonlin-
ear systems. The basic idea consists in propos-
ing Lyapunov function candidates of Lur’e type
for the error dynamics of the observation prob-
lem. Since the the nonlinearity is time-varying
in this case, ideas similar to the classical results
on extensions of Popov’s criterion to time-varying
nonlinearities (Willems, 1967; Narendra and Tay-
lor, 1973; Willems, 1970; Bliman, 1999) can be
used. Basically, all these results rely on restricting
not only the sector of the nonlinearity, but also
its time-variation. A new aspect here is the fact
that the time-variation of the nonlinearity of the
error system depends on the plant’s state dynam-
ics. And so the use of Popov’s criterion for the
observer design will require to use information on
the plant’s dynamics. This is a very interesting
feature, that cannot be reached by the circle cri-
terion, for which the plant’s dynamics is not taken
into account.

In fact a major motivation for this work is the pos-
sibility of considering Lyapunov functions that are
not only functions of the error dynamics, but also
that are dependent on the plant’s dynamics. This
allows the use of the particular dynamic charac-
teristics of the plant for the design of the observer.
Recall that most observer design methods rely on
Lyapunov functions that are functions exclusively
of the error system state. So for example, the high-
gain method (Gauthier et al., 1992; Gauthier and
Kupka, 2001) uses quadratic Lyapunov functions
in the error state.

To simplify the presentation only the case of a
scalar nonlinearity will be considered, although
the same ideas can be extended easily to the multi-
variable one. The rest of the paper is organized in
the following form. In the next Section the class of
systems and the problem to be solved in this work
is introduced. The proposed method is described
in Section 3. The geometric interpretation of the
design conditions is given in Section 4, and in
Section 5 an illustrative example is presented.

2. PROBLEM FORMULATION

Consider a plant that can be brought to the form

Σ :





ẋ = Ax + Gψ (σ) + ϕ (t, y, u) , x (0) = x0

y = Cx ,
σ = Hx

(1)
where x ∈ Rn is the state, u ∈ Rm is a known
input, y ∈ Rp is the measured output, and σ
∈ R is a (not necessarily measured) linear function
of the state. ϕ (t, y, u) is an arbitrary nonlinear
function of the time, the input and the output.

ψ (σ) is a scalar function that depends on σ. ψ
and ϕ are assumed to be locally Lipschitz in σ
or y, continuous in u, and piecewise continuous
in t. Since the plant Σ is not assumed globally
Lipschitz the global existence of solutions is not
guaranteed, i.e. for some initial conditions and
inputs finite escape time is possible. This is a
not desirable situation and will be excluded by
assuming that Σ (1) is either complete, i.e. the
state trajectories x (t) are defined for every t ≥ 0,
every initial condition x0 ∈ Rn and every input
u (·) ∈ U , or that the initial states and/or inputs
are so restricted that the state trajectory is locally
bounded, i.e. x (t) ∈ L∞e.

An observer for Σ of the form

Ω :





·
x̂ = Ax̂ + L (ŷ − y) + Gψ (σ̂ + N (ŷ − y))+

+ϕ (t, y, u) , x̂ (0) = x̂0

ŷ = Cx̂ ,
σ̂ = Hx̂

(2)
is proposed, where matrices L ∈ Rn×p, and N ∈
R1×p have to be designed. Defining the state
estimation error e , x̂− x, the output estimation
error ỹ , ŷ− y, and the function estimation error
σ̃ , σ̂ − σ, the dynamics of e is given by

ė = (A + LC) e−G [ψ (σ)− ψ (σ̂ + Nỹ)] ,
ỹ = Ce , e (0) = e0 = x̂0 − x0

σ̃ = He .

Note that σ̂ + Nỹ = Hx̂ + NCe = Hx + He +
NCe = σ + (H + NC) e. Defining

z , (H + NC) e = σ̃ + Nỹ

φ (z, σ) , ψ (σ)− ψ (σ + z) , (3)

the dynamics of the error can be written as

Ξ :





ė = ALe + Gν , e (0) = e0

z = HNe ,
ν = −φ (z, σ)

(4)

where AL , A + LC, and HN , H + NC.
Note that φ (0, σ) = 0 for all σ and u. The error
dynamics (4) is not autonomous, as in the linear
case, but it is driven by the plant (1) through the
linear function of the state σ = Hx. φ is therefore
a time varying nonlinearity, whose time variation
depends on the state trajectory of the plant. In
fact the error dynamics Ξ is driven by the plant
Σ.

The aim is to find matrices L and N such that for
every initial state of the error system e0 and every
initial state of the plant x0, and any input u the
state of the error equation e → 0 as t →∞. This
corresponds for the composite system Σ−Ξ to the
globally asymptotically stability of e uniformly in
x0 and u, i.e. to a concept of partial stability
(Chellaboina and Haddad, 2002).

It will be assumed that the memoryless function
φ (z, σ), that is given by the problem data, belongs



to a sector [0, k] with respect to z. This means that
(see (Khalil, 2002)) for some k ∈ R, k > 0.

φ (z, σ)
[

1
k

φ (z, σ)− z

]
≤ 0 , (5)

for all (z, σ). In case k = ∞, i.e. for a non
Lipschitz nonlinearity, the sector condition (5)
becomes zφ (z, σ) ≥ 0.

3. OBSERVER DESIGN METHOD

To design the observer consider the (partial) Lya-
punov function candidate of Lur’e type for the
composite system Σ− Ξ

V (e, σ) = eT Pe + 2ml

∫ z

0

φ (ξ, σ) dξ+ (6)

+ 2mu

∫ z

0

[
ξ − 1

k
φ (ξ, σ)

]
dξ ,

with P = PT > 0 a positive definite matrix and
ml,mu ≥ 0. Since P > 0 and φ (z, σ) satisfies
(5) it follows easily that V is positive definite and
radially unbounded with respect to e, uniformly
in σ. To assure that this function is decrescent in
e uniformly in σ consider the Jacobian

∂V (e, σ)
∂e

= 2eT P + 2mlφ (z, σ) HN+

+ 2mu

[
z − 1

k
φ (z, σ)

]
HN .

If this is a bounded function of σ for every
fixed (with finite norm) e, then V is decrescent
(Narendra and Taylor, 1973, Ch. 3, Lemma A).

The time derivative of V along the solutions of
the error system Ξ is given by

V̇ =
[

e
φ

]T [
S RT

R Q

] [
e
φ

]
+2m

∫ z

0

∂φ (ξ, σ)
∂σ

dξσ̇ ,

with

S , ΠAL + AT
LΠ , Q , −m

(
HNG + GT HT

N

)
,

RT , −ΠG + mAT
LHT

N ,

Π , P + muHT
NHN , m , ml − mu

k
.

Note that the sector condition of the nonlinearity
(5) can be written as

[
e
φ

]T
[

0 HT
N

HN −2
k

] [
e
φ

]
≥ 0 .

Adding these two expressions one obtains

V̇ ≤
[

e
φ

]T
[

S RT + HT
N

R + HN , −2
k

+ Q

] [
e
φ

]
+ (7)

+ 2m

∫ z

0

∂φ (ξ, σ)
∂σ

dξ σ̇

Now, define

% (z, σ) , ∂φ (z, σ)
∂σ

= ψ′ (σ)− ψ′ (σ + z) , (8)

that satisfies % (0, σ) = 0, for every σ. The nonlin-
earity satisfies

∫ z

0

∂φ (ξ, σ)
∂σ

dξ =
[
ψ′ (σ)HN , 1

] [
e
φ

]
.

Note that this integral is ”linear” in (e, φ). How-
ever, this is difficult to compensate in the deriva-
tive of the Lyapunov function, since it is not sign
defined, and since a linear term dominates the
quadratic ones in the Lyapunov expression.

We look therefore for a quadratic representation
of the integral term. This is possible under some
assumptions, as the following paragraphs clarify.
First, a ”linear” representation of the integrand is
obtained. By the mean value theorem, if % (z, σ)
is a continuously differentiable function, it follows
(Vidyasagar, 1993) that there exists a continuous
F (z, σ) such that

% (z, σ) = F (z, σ) z ,

and

F (z, σ) =
∫ 1

0

∂% (λz, σ)
∂z

dλ , (9)

is an explicit representation of the function. Since

∂% (z, σ)
∂z

= −ψ′′ (σ + z) ,

it follows that

F (z, σ) =

{
% (z, σ)

z
, for z 6= 0

−ψ′′ (σ) , for z = 0
.

If F (z, σ) is upper and lower bounded, i.e.
∃ α, β ∈ R so that

α ≤ F (z, σ) ≤ β , ∀ z, σ , (10)

then the searched quadratic representation for the
integral term is given by

1
2
αz2 ≤

∫ z

0

% (ξ, σ) dξ ≤ 1
2
βz2 .

Furthermore, if the time derivative of σ is also
upper and lower bounded, i.e. ∃ a, b ∈ R so that

a ≤ σ̇ ≤ b , (11)

then there exist γ, δ ∈ R so that

1
2
γz2 ≤

∫ z

0

% (ξ, σ) dξ σ̇ ≤ 1
2
δz2 . (12)

So, for example, if α = −β, and a = −b, then
γ = −δ = −bβ.

Since
(
γml − δ

mu

k

)
z2 ≤ 2m

∫ z

0

% (ξ, σ) dξ σ̇ ≤ µz2 ,

with µ ,
(
δml − γ mu

k

)
, then (7) becomes

V̇ ≤
[

e
φ

]T
[

S + µHT
NHN , RT + HT

N

R + HN −2
k

+ Q

] [
e
φ

]
.

The main result of the paper is the following



Theorem 1. Consider the plant Σ (1). Suppose
that F (z, σ) (9) is bounded (10), and that dσ/dt
is also bounded (11). If there exist matrices P =
PT > 0, L, N , non negative scalars ml,mu, and
a positive scalar ε > 0 such that

[
S + µHT

NHN + εP RT + HT
N

R + HN −2
k

+ Q

]
≤ 0 , (13)

with AL = A + LC, HN = H + NC, S = ΠAL +
AT

LΠ, Q = −m
(
HNG + GT HT

N

)
, RT = −ΠG +

mAT
LHT

N , µ =
(
δml − γ mu

k

)
, Π = P +muHT

NHN ,
m = ml − mu

k , is satisfied, then the error system
is globally asymptotically stable with respect to e
uniformly in x0, i.e. there exist a KL function η
so that

‖e (t)‖ ≤ η (‖e (0)‖ , t) , ∀t ≥ 0 , ∀x0 ∈ Rn .

If k = ∞ then mu = 0, and m = ml ≥ 0, and
for the uniformity of the convergence it has to be
assumed that V in (6) is decrescent. Moreover,
if k is finite then the error system is globally
exponentially stable with respect to e uniformly
in x0, i.e. there exist constants κ, λ > 0 such that
for Ξ (4)

‖e (t)‖ ≤ κ ‖e (0)‖ exp (−λt) , ∀t ≥ 0 , ∀x0 ∈ Rn .

for every locally bounded trajectory of the plant.
I.e. system Ω (2) is an observer for the plant.

PROOF. Consider (6) as Lyapunov function
candidate. If (13) is satisfied it follows easily that

V̇ ≤ −εeT Pe

and the composite system Σ − Θ is globally as-
ymptotically stable with respect to e uniformly
in x0, as far as V is decrescent (Chellaboina and
Haddad, 2002). If k is finite, then the stability is
exponential, but for k = ∞ only asymptotic sta-
bility can be assured, since the Lyapunov function
can grow faster than a quadratic term. 2

Remark 2. The inequality (13) is an intermediate
result between the circle criterion and the classi-
cal Popov criterion, and contains them as special
cases. If m = mu = ml = 0, then the circle
criterion is obtained, whereas the classical Popov
criterion with time-invariant nonlinearities is re-
covered setting δ = γ = 0. Note, however, that the
Popov criterion with time-invariant nonlinearity is
not applicable in our case.

Remark 3. The classical Lyapunov function of
Lur’e type includes only the first integral term.
The inclusion of the second term allows the con-
sideration of positive or negative values of m,
when k is finite.

Remark 4. The boundedness of F (z, σ) in Theo-
rem 1 means that the growth of the nonlinearity

φ (z, σ) is slower than quadratic in z. In fact, if k
is finite, then F (z, σ) is automatically bounded.
Although this condition limits the growth of the
nonlinearity it does not require it to be Lipschitz.

Remark 5. The boundedness of σ̇ in Theorem 1
is a requirement on the growth velocity of the
trajectories of the plant. This is usually a rea-
sonable assumption. Note that this restriction
does not imply that the plant’s trajectories can-
not grow unboundedly, but they have to grow
slowly enough. However, if plant’s trajectories are
bounded and stay in a compact set, then this
condition is satisfied. It is also possible to show,
that if σ̇ converges to a bounded signal, then the
convergence of the observer is assured. This is for
example the case, if plant’s trajectories converge
to a bounded set, in particular if the plant has a
globally stable equilibrium point, or set.

4. GEOMETRIC INTERPRETATION

The classical Popov criterion is usually stated as
a frequency domain condition, and this was very
useful because of its geometric interpretation in
the complex plane (Khalil, 2002). In a similar
manner the design inequality (13) can also be
converted into a frequency domain condition, from
which a geometric interpretation can be derived.

The frequency domain condition is derived using
the classical Kalman-Yakubovich-Popov(KYP) Lemma,
that we recall here, in its following form (Willems,
1971; Rantzer, 1996)

Proposition 6. Given A ∈ Rn×n, B ∈ Rn×m,
M = MT ∈ R(n+m)×(n+m), with det (jωI −A) 6=
0 for ω ∈ R and (A,B) controllable, the following
two statements are equivalent:

(i) for ∀ω ∈ R∪{∞}
[

(jωI −A)−1
B

I

]∗
M

[
(jωI −A)−1

B
I

]
≤ 0 .

(ii) There exists a matrix P ∈ Rn×n such that
P = PT and

M +
[

AT P + PA PB

BT P 0

]
≤ 0 .

The corresponding equivalence for strict inequali-
ties holds even if (A,B) is not controllable.
When the upper left corner of M is positive semi-
definite, and when A is Hurwitz stable it follows
that P ≥ 0.

The application of Proposition 6 to (13) delivers
the frequency domain condition.

Proposition 7. Inequality (13) is satisfied if and
only if ∀ω ∈ R ∪ {∞}



(1 + muHNG)Re {G (jω)} −mu
(δ − γ)

2k
|G (jω)|2

−m

(
ω Im {G (jω)} − δ

2
|G (jω)|2

)
+

1
k

> 0 (14)

where G (s) = HN (sI −AL)−1
G.

A geometric interpretation of the frequency do-
main inequality (14) is easily given for mu = 0 (in
this case m ≥ 0): If one plots Re {G (jω)} versus
ω Im {G (jω)} − δ

2 |G (jω)|2, then condition (14)
is satisfied if the plot lies to the right of the line
that intercepts the point −1/k + j0 with a (non
negative) slope 1/m. Note that this plot is neither
Nyquist plot (that is the plot of Re {G (jω)} ver-
sus Im {G (jω)}) nor Popov plot (that is the plot
of Re {G (jω)} versus ω Im {G (jω)}).
If, furthermore, m = 0 the condition reduces to
the one for the circle criterion, i.e.

Re {G (jω)}+
1
k

> 0 , ∀ω ∈ R ∪ {∞} .

This shows that the conditions of (14) are weaker
than those of the circle criterion, and convergence
of the observer can be obtained under less strin-
gent conditions.

5. EXAMPLE

For illustration consider the system

Σ :





ẋ1 = x2 ,
ẋ2 = x3 ,
ẋ3 = −κx3 + g (x2) + u
y = x1 ,

with g (x2) = −x2 |x2|, and κ > 0. This system
can be written in the form (1), and the error
equation (4) is given with

AL =




l1 1 0
l2 0 1
l3 0 −κ


 , G =




0
0
1


 , CT =




1
0
0


 ,

σ = x2 , H =
[
0 1 0

]
,

φ (z, σ) = g (σ)−g (σ + z) = −σ |σ|+(σ + z) |σ + z| .

The nonlinearity belongs to the sector φ ∈ [0,∞]
for all values of σ, since zφ (z, σ) ≥ 0 for all σ and
z, and k = ∞ since for σ = 0, φ (z, 0) = −g (z) is
not globally Lipschitz, i.e. it grows faster than any
linear function. The continuous function F (z, σ),
given by

F (z, σ) =





2 if σ ≥ 0, z + σ ≥ 0
−2 (1 + 2σ/z) if σ ≥ 0, z + σ ≤ 0
2 (1 + 2σ/z) if σ ≤ 0, z + σ ≥ 0
−2 if σ ≤ 0, z + σ ≤ 0

,

is bounded by α = −2, and β = 2 (10). Note that
in this example % (z, σ) is not continuously differ-
entiable (as assumed in the general development)
but however the same ideas can be applied.

Now it is required to determine the bounds of
σ̇(11). Note that σ̇ = x3, and take the (partial)
Lyapunov function

W (x2, x3) =
1
4

[
x2 x3

] [
κ2 κ
κ 2

] [
x2

x3

]
−

∫ x2

0

g (z) dz

and calculate its time derivative along the solu-
tions of the plant Σ

Ẇ = −1
2
κx2

3 +
1
2
κx2g (x2) + u

(
x3 +

1
2
κx2

)
.

If u is bounded this shows that (x2, x3) converges
globally and uniformly to a ball containing the
origin. In this case σ̇ is bounded after some finite
time. So in (12) the case with δ = −γ > 0
will be considered, where δ is a positive constant
depending on the bound of u.

For this simple SISO case the satisfaction of the
circle criterion can be interpreted in the frequency
domain. The transfer function of the linear part
of the error equation is given by

G (s) =
s− l1 + N

s3 − (l1 − κ) s2 − (l2 + l1κ) s− (l3 + l2κ)
.

Note that by choosing appropriately the para-
meters (N, l1, l2, l3) the numerator and denom-
inator coefficients of this transfer function can
be arbitrarily assigned. In this case the satisfac-
tion of the circle criterion for the sector [0,∞]
corresponds to the selection of the parameters
(N, l1, l2, l3) so that the transfer matrix G (s) is
SPR (Khalil, 2002). However, this is not possible,
since the relative degree of G (s) is 2 for every
selection of the parameters, and the relative de-
gree of an SPR transfer function has to be 0 or 1.
Therefore, the circle criterion cannot be satisfied
in this case. Moreover, it is not possible to design
a high-gain observer, since the nonlinearity is not
globally Lipschitz.

The satisfaction of the Popov criterion cor-
responds to the selection of the parameters
(N, l1, l2, l3) such that the inequality (14) ∀ω ∈
R∪{∞}, Z (jω) > 0, where Z (jω) , Re {G (jω)}−
m

(
ω Im {G (jω)} − δ

2 |G (jω)|2
)

(recall that HNG =
0 and k = ∞) is satisfied for some m ≥ 0. Since for
ω = ±∞ the left-hand side is zero, it is necessary
to check additionally that

lim
ω→∞

ω2Z (jω) > 0 .

By selecting the parameters (N, l1, l2, l3) such that

G (s) =
s + 1

(s + 2) (s + 3) (s + 4)
,

the modified Popov plot for three different values
of δ is given in Figure 1. It is clear that it is
possible to select the value of m > 0 such that
the Popov plot lies to the right of the line of slope
1/m, for every value of δ. Moreover, the limit

lim
ω→∞

ω2Z (jω) = 8m + 1 > 0 ,
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ReG(jw)

w
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 |G
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)|
2

Modified Popov plot for the example

slope = 1/m 

delta = 100

delta = 500

delta = 1000

G(s)=(s+1)/(s3+9s2+26s+24) 

Fig. 1. Modified Popov Plot for G (s) in example,
for δ = {100, 500, 1000}.

for every m > 0 independently of δ. The slope of
the curve for ω →∞ is given by

lim
ω→∞

ω Im {G (jω)} − δ
2 |G (jω)|2

Re {G (jω)} = 8 ,

that is independent of δ. This means that for
m ≥ 1/8 the generalized Popov conditions are
satisfied for every δ. The observer is therefore
globally convergent, if the input u is bounded,
although the plant’s state is not bounded.

6. CONCLUSIONS

Popov-like criteria can be used with advantage for
the design of nonlinear observers, if they are con-
veniently modified. This has the advantage that
the requirements for the assertion of the conver-
gence of the observer are weaker than when using
circle-like criteria proposed previously. Moreover,
the dynamics of the plant has to be taken into
account to assert the convergence properties of the
observer. This seems to be a new feature in the de-
sign of nonlinear observers. Usually the Lyapunov
functions considered in the design of nonlinear
observers is independent of the dynamics of the
plant. The method proposed here introduces a
family of Lyapunov functions parameterized by
the trajectories of the plant. The extension of this
ideas to the multivariable case and to more general
classes of nonlinear systems is also possible and
will be reported elsewhere.
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