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Abstract: This paper considers the problem of controlling both the planar position and 
orientation of an underactuated airship with a reduced number of actuators. The airship is a 
nonholonomic system described by a set of nonlinear equations and the dynamics are subject to 
bounded uncertainties. A smooth and time-varying coordinate transformation is utilized to 
reduce the stabilization problem of the airship to that of a linear time-invariant system. A new 
robust feedback controller is presented for obtaining global exponential stabilization of the 
airship in the presence of the plant uncertainties. The proposed design method is simple and 
straightforward. Experiments are performed to validate the effectiveness of the proposed 
controller. Copyright © 2005 IFAC 
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1. INTRODUCTION 

Airship is a unique vehicle which enables safe and 
long-duration flight and station keeping. Recently, 
the interest to unmanned airships has been increasing. 
Many interesting projects are in progress such as 
Stratospheric Platform Project (Onda, 1999), in 
which the stratospheric airship is utilized as a mobile 
and low-cost platform for high-speed wireless 
communication instead of satellites. The position and 
attitude control is one of the most important 
component technologies. 

This paper considers the problem of controlling both 
the planar position and orientation of an under-
actuated airship, which is a nonholonomic system 
with fewer independent inputs than degree of 
freedom to be controlled. The problem is essentially 
similar to that of an underactuated ship system 
(Khoury and Gillett, 1999). The obstruction is the 
fact that there exists no continuous time-invariant 
state feedback controller to stabilize the system 
(Brockett, 1983). During the last few years, many 
interesting approaches have been proposed to 
stabilize the nonholonomic systems; for example, 

discontinuous feedback approach (Reyhanoglu, 1996, 
1997), time-varying feedback approach (Pettersen 
and Nijimeijer, 2000; Do et al., 2002a,b; Jiang, 2002), 
averaging approach (Mazenc et al., 2002; Pettersen 
and Fossen, 2000). These studies mainly deal with 
the stabilization problem of underactuated ships.   

Reyhanoglu (1996, 1997) applied a σ-process 
technique (Arnold, 1983; Astolfi, 1996) to the 
stabilization problem of an underactuated ship and 
derived a discontinuous coordinate transformation 
such that the stabilization problem can be reduced to 
the conventional pole-placement problem of a linear 
system. This approach makes the linear control 
theory applicable. Thus, it is useful not only for the 
design of stabilizing controllers but also for more 
sophisticated control problems. However, the method 
involves some troublesome problems that the 
coordinate transformation has some singular points, 
and asymptotic stability is not guaranteed for some 
initial states. Tian and Li (2002) generalized the 
coordinate transformation to a larger class of 
nonholonomic systems that include chained systems. 
These results did not consider uncertainties of the 
plant dynamics. 



      

This paper considers a robust global stabilization 
problem for the case where the dynamics of the 
underactuated airship are subjected to bounded 
uncertainties. A smooth and time-varying coordinate 
transformation is utilized to reduce the problem of 
the airship to that of a linear system. The 
transformation is independent of the initial state of 
the system and is nonsingular. The following 
advantages are obtained. First, this paper deals with 
the case where the dynamics are known and presents 
a new controller to guarantee exponential stability of 
the system for any initial states. The design method 
based on the well-known linear control theory is 
simple and straightforward. Second, this paper 
considers the robust stabilization problem for the 
uncertain airship with unknown but bounded 
parameters. The new problem is reduced to the well-
known quadric stabilization problem for an uncertain 
linear system (Petersen, 1987). The design method is 
simple, and it involves a certain algebraic Riccati 
equation. Finally, experimental results show the 
effectiveness of the proposed control system. 

2.  PROBLEM FORMULATION 

Consider the problem of controlling the Cartesian 
position and orientation of an airship with two 
independent propellers as shown in Fig.1. (x,y) 
denotes the earth-fixed position of the center of mass 
of the airship, θ  denotes the orientation angle and u, 
v and r are the surge, sway, yaw velocities in the 
vehicle-fixed frame, respectively. For simplicity, the 
airship is symmetric and the origin of the vehicle-
fixed frame is assumed to be located at the center of 
the mass. It is also assumed that the airship is 
neutrally buoyant without rolling and pitch motions 
and the actuators of the airship are two independent 
propellers without side thrusters. Then the dynamic 
equations of motion of the vehicle can be expressed 
in the vehicle-fixed frame as   
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where 0>im  and 3,2,1,0 => idii  are the inertia 
constants and the damping ones,  including 
hydrodynamic added mass effects. For simplicity, it 
is assumed that 21 mmm == . ru and ττ  denote the 
external force and torque generated by the two 
propellers. The kinematical model that describes the  
 
 
 
 
 
 
 
 
 

Fig.1 Model of an airship with two propellers. 

geometrical relationship between the earth-fixed and 
the vehicle-fixed motion is given by  
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By putting together the kinematics and the dynamics, 
the following state equation of the airship is obtained. 
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where 
3,2,1, == imdd iiii .   

The objective of this paper is to find the control 
inputs ru ττ ,  such that the systems of both 1Σ  and 

2Σ  are exponentially globally stable at the origin.  

3.  PRELIMINARY 

This section shows the key lemma to solve the 
stabilization problem.   

Lemma 1  (Slotine and Li, 1991) 
Consider the following time-varying system  

( )xx )(21 tAAdt
d += ,  (5) 

where 1A  is a constant and Hurwitz matrix and 
)(2 tA  is a matrix such that )(0)(2 ∞→→ ttA  and  

.)(0 2 ∞<∫
∞ dttA   (6) 

Then the system is globally exponentially stable at 
the origin.                                                                

4.  GLOBAL STABILIZATION  

This section deals with the case where the damping 
constants of 3,2,1, =idi  are exactly known and 
considers a state feedback stabilization problem such 
that the subsystems of 1Σ  and 2Σ  are both 
exponentially globally stable at the origin. To begin 
with, let us focus on the subsystem 2Σ , called the 
linear subsystem. Consider the feedback controller 
described by 
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where  4
321 ],,,[ R∈akkk  are free parameters, s.t.,  
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.0,0321 ≠>>> akkk   (8) 

Then the subsystem 2Σ  is expressed as   
tkeatkktkkt 3)()()()( 2121

−=+++ θθθ &&& . (9) 

By solving the differential equation, the responses of 
the yaw angle and the yaw velocity are obtained as 

tktktk eeet 321 321)( −−− ++= θθθθ  
tktktk ekekektr 321 332211)( −−− −−−= θθθ , (10) 

where  
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Since 0321 >>> kkk , the subsystem 2Σ  is 
exponentially globally stable at the origin. 

Next, let us focus on the subsystem 1Σ  called the 
nonlinear subsystem. Note that, from Eqs.(4) and 
(10), the subsystem 1Σ  becomes a linear time-
varying system consisting of the time varying 
element of )(tr . It may look natural to decompose 
the subsystem into a time-invariant part and time-
varying part consisting of )(tr  only. Unfortunately, 
however, the time-invariant system is not stabilizable, 
and Lemma 1 does not apply to the decomposition to 
solve the stabilization problem. The key idea is, then, 
the reduction of the nonlinear subsystem by applying 
a smooth coordinate transformation as follows: 

tktk ezzzzevvuu 33 2211 ,,, ==== . (12) 

Define the new state vector as  
4

21 ],,,[ Rx ∈= Tzzvu .  (13) 

Then the subsystem 1Σ  is represented as 

utA τbxx += )(& ,   (14) 

where  
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Note that the (2,1) and (4,3) elements have nonzero 
constant term of 33kθ  as follows: 
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The subsystem 1Σ  is decomposed as follows:  

utAA τbxx ++= ))(( 21& ,  (17) 

where 
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It is easily checked that the time-varying element of 
)(2 tA  satisfies both )(0)(2 ∞→→ ttA  and Eq.(6). 

The following lemma guarantees the controllability 
of the reduced subsystem (17) removing the time-
varying matrix )(2 tA .  

Lemma 2  
Consider the following time-invariant system   

uA τbxx += 1
& .   (19) 

This system is controllable if and only if  

23 dk ≠ .   (20) 

Proof:  The proof is straightforward, and is omitted. 

The following theorem presents a simple and explicit 
design method of the stabilizing controller. 

Theorem 1  
Design  

4
4321 ],,,[ Rkkkkk ∈=   (21) 

such that the matrix of )( 1 kbA −  is Hurwitz. 
Consider the state feedback controller of Eq.(7) and 

)( 33 241321
tktk

u ezkzkevkuk +++−=τ . (22) 

4
321 ],,,[ R∈akkk  in Eq.(7) satisfies Eqs.(8) and 

(20), Then the system of Eq.(4) is exponentially 
stable at the origin for any initial states. 
Proof: From Eq.(22), the subsystem 1Σ  is 
represented by   

xkbx ))()(( 21 tAA +−=& .  (23) 

Since the matrix of )( 1 kbA −  is Hurwitz, Lemma 1 
guarantees that the system (23) is globally exponen-
tially stable at the origin.        
Remark 1: Lemma 2 makes clear that there exists a 
feedback gain 4Rk ∈  such that )( 1 kbA −  is 
Hurwitz. Moreover the design method is simple and 
straightforward by applying the conventional linear 
control theory. 
Remark 2: Compared with the previous results 
(Reyhanoglu, 1996, 1997; Tian and Li, 2002), the 
proposed method has two merits. First, the 
coordinate transformation is smooth and is non-
singular. Second, the linear time-invariant part 

),( 1 bA  of the reduced system is independent of the 
initial state. Accordingly, the proposed method can 



      

guarantee that exponential stability of the system 
holds for any initial states.  
Remark 3: Theorem 1 shows that by using the state 
feedback controller (7) and the coordinate 
transformation (12), the stabilization problem of the 
nonlinear system (4) is reduced to that of the linear 
time-invariant system (19). This approach makes the 
linear control theory applicable. Thus, it is useful for 
more sophisticated control problems. In the next 
section, we will apply the reduction to a robust 
stabilization problem.  

5.  ROBUST GLOBAL STABILIZATION 

This section deals with the case where the damping 
constants are subjected to bounded uncertainties as 
follows: 

3,2,1, =≤≤ iddd iii ,  (24) 

where 3,2,1,0, => idd ii  are known in advance. 
The aim of this section is to solve a robust 
stabilization problem such that the systems of 1Σ  
and 2Σ  are both exponentially globally stable at the 
origin in the presence of the uncertainties.  

First, let us focus on the linear subsystem 2Σ . 
Consider the feedback controller described by 
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where  4
321 ],,,[ R∈akkk  are free parameters that 

satisfy Eq.(8). The subsystem 2Σ  is expressed as   
tk
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From Eq.(24), it follows that 

330 ddd −≤∆≤  .  (27) 

The following lemma is obtained. 

Lemma 3  
The responses of the yaw angle and the velocity are 
obtained by 

tktt eeet 321 321)( −−− ++= θθθθ λλ  
tktt ekeetr 321 332211)( −−− −−−= θλθλθ λλ , (28) 

where 
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Since for any 3d  satisfying Eq.(24),  

0,0 321 >>> kλλ ,  (30) 

the subsystem 2Σ  is globally exponentially stable at 
the origin. Choose R∈3k  such that 

2
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Then for any 3d  satisfying Eq.(24), it follows that 

0321 >>> kλλ .   (32) 

Proof: The proof is straightforward and is omitted. 

Next, let us consider the nonlinear subsystem 1Σ . 
The smooth coordinate transformation (12) is applied. 
Then the subsystem 1Σ  is represented as 

utAA τbxx ++= ))(( 21& .  (33) 

1A  and )(2 tA  are given by Eq.(18) replaced by 

tktk eet )(
22

)(
11 3231)( −−−− += λλ λθλθα . (34) 

Since the time-varying )(2 tA  satisfies both Eq.(6) 
and )(0)(2 ∞→→ ttA , from Lemma 1, the robust 
stabilization problem is reduced to that of the linear 
time-invariant system given by   

uA τbxx += 1& .   (35) 

Note that the matrix 44
1

×∈ RA  involves a structured 
uncertainty on the coefficients of 1d , 2d  and 3θ . 
The bounds of 1d  and 2d  are given by Eq.(24). 
Since from Eq.(29), R∈3θ  is written as   
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These uncertainties can be represented as  
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Then 44
1

×∈ RA  can be separated into a known part 
and uncertain one as follows:  
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Note that the bound of the uncertainty ∆  is given by 
1≤∆ ,   (41) 

where  denotes the Euclidean norm. The reduced 
system (35) is expressed as  

uEDA τbxx +∆+= )( 10& .  (42) 

The following lemma guarantees the controllability 
of the reduced subsystem (42) in the absence of the 
uncertainty ∆ .  

Lemma 4  
Consider the following time-invariant system   

uA τbxx += 10& .   (43) 

This system is controllable if and only if  

203 dk ≠ .   (44) 

Then the perturbed system (42) is quadratically 
stabilizable via linear control if and only if given any 
positive definite matrix 44×∈ RQ  and any 0>r , there 
exists a constant 0>ε  such that the Riccati equation 

01
1010 =+++−+ QEEPPDDPPAPPA TTT

r
T εε bb   

   (45) 
has a positive definite solution 44×∈ RP . 

Proof:  See Petersen (1987).    

The following theorem presents a simple and explicit 
design method of the robust controller. 

Theorem 2  
Consider state feedback controller (25) and choose  

R∈3k  satisfying both Eqs.(8), (31) and (44). Given 
any positive definite matrix 44×∈ RQ  and any 0>r , 
if there exists a constant 0>ε  such that the Riccati 
equation (45) has a positive definite solution 

44×∈ RP , then there exists a controller such that the 
systems of 1Σ  and 2Σ  are both exponentially stable 
at the origin for both any uncertainties satisfying 
Eq.(24) and any initial states. Furthermore, a suitable 
robust control low is obtained by   

)( 33 241321
tktk

u ezkzkevkuk +++−=τ , (46) 

where the feedback gain  
4

4321 ],,,[ Rkkkk ∈=k   (47) 
is given by  
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2
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ε
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r
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Proof: From Eqs.(33) and (40), the closed loop 
system 1Σ  with the state feedback controller (46) is 
represented by   

xkbx ))(( 210 tAEDA +∆+−=& .  (49) 

The feedback gain (48) stabilizes quadratically the 
following system removing the time-varying matrix 

)(2 tA   

xkbx )( 10 EDA ∆+−=&   (50) 

for any uncertainties satisfying Eq.(24) and any 
initial states. In other words, the uncertain matrix of 

)( 10 EDA ∆+− kb  is Hurwitz. Accordingly, 
Lemma 1 guarantees that the system (49) is 
exponentially stable at the origin for any 
uncertainties of Eq.(24) and any initial states. 

6.  EXPERIMENTS 

Indoor experiments were performed by using a radio-
controlled blimp of 1 [m] in length and 0.5 [m] in 
diameter (Fig.2). The actuators are given by two 
independent propellers. Test flights were performed 
to obtain the following physical parameters:  
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The coefficients of the feedback controller were 
chosen as follows: 

]05.0,13.0,29.0,32.0[],,,[ 321 =akkk ,  (52) 
4]11.0,20.0,11.0,61.0[ Rk ∈= .  (53) 

In the experiment, the initial states were set as 
follows: 
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 (54) 

Figure 3 shows the trajectory of the center of mass of 
the blimp, and Figure 4 gives a sequence of 
photographs of the blimp motion. Figures 5 shows 

 
 
 
 
 
 
 
 
 

Fig.2  Blimp and propellers in experiment. 
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Fig.3 Trajectory of blimp (experiment).  
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Fig.4 Sequence photographs of blimp motion 

(experiment). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

time responses of the states. These figures 
demonstrate that the proposed control system 
provides a smooth and effective switching motion, 
and both the position and the orientation converge to 
the origin and zero quickly, respectively.  

7. CONCLUSIONS 

This paper has presented a new robust feedback 
controller for global exponential stabilization of both 
the position and orientation of an underactuated 
airship in the presence of bounded uncertainties on 
the damping coefficients. Experiments using a blimp 
have demonstrated the effectiveness.  
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