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Abstract: A suboptimal dual controller for discrete stochastic systems with unknown
parameters based on the bicriterial approach is proposed and discussed. It is supposed
that all the random quantities are non-Gaussian. This assumption induces that a global
estimation method has to be used. The Gaussian sum method with multiple linearization
technique was chosen and applied in the bicriterial control approach. The probing part
of the control law is determined for each local node of estimated probability density
function separately and respects accuracy of each local estimate inherent in the estimated
probability density function. A comparison of the proposed modified bicriterial controller
and the bicriterial controller which uses global point estimate only is shown in some
numerical examples. Copyright c©2005 IFAC
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1. INTRODUCTION

In many control problems it is necessary to cope with
insufficient knowledge of some of the system param-
eters. Such a problem leads to adaptive control which
provides instruments for simultaneous control of the
system and estimation of unknown quantities. The
simplest approaches use the separation principle with
imposing the certainty equivalence property, and thus
omitting the stochastic character of the problem, or
lead to cautious control. However, most of the prob-
lems lead to the controller with inherent dual prop-
erties. Such a controller has to meet two conflicting
goals. It should meet the control objective and at the
same time to improve knowledge about unknown pa-
rameters (Feldbaum, 1965).

Unfortunately for such problem closed form solution
cannot be mostly analytically found. Many suboptimal
solutions providing dual control properties were pro-

posed. However, they don’t provide universal tools for
solving the problem. They are valid for limited class of
considered systems only or impose some restrictions.
The necessity of lowering the computational burden
leads mostly to one step ahead minimization accom-
panied by enhancement of the criteria (Wittenmark,
1975; Milito et al., 1982) or by augmenting the result-
ing control with some arbitrary probing signal (Alster
and Bélanger, 1974). Other dual control approaches
are based upon application of suitable approximation
(Sternby, 1976; Maitelli and Yoneyama, 1994; Pron-
zato et al., 1996; Lindoff et al., 1999) and can be
mostly very computationally intensive (Birmiwal and
Bar-Shalom, 1984).

A promising approach seems to be the bicriterial con-
troller based on application of two criteria each re-
flecting one of the conflicting goals of the dual control
(Filatov et al., 1997). This controller is not only com-
putationally moderate but also practically realizable



(Filatov et al., 1996; Filatov, 1998). As it was shown
in Šimandl and Flı́dr (2001) it is possible to use this
controller for state space systems with time varying
parameters where all the stochastic quantities can be
suggested as non-Gaussian. In such a case it is desir-
able to employ a suitable global estimation method
such as the Gaussian sum method (GSM) (Šimandl
and Flı́dr, 1997; Alspach and Sorenson, 1971) that
can ensure better quality of the state and parameter
estimates by respecting the nonlinear nature of the
identification problem.

Goal of this paper is to design an alternative bicriterial
controller fully utilizing the character of the GSM.
The intention is to change the control law in such a
way that the controller makes use of the whole infor-
mation provided by the estimated probability density
function (pdf) and not just a point estimate and to
analyze probing signal and quality of the proposed
bicriterial dual controller.

The following section deals with the formulation of
the problem and description of a suboptimal dual con-
troller derived using the bicriterial approach. Section 3
is then dedicated to description of the bicriterial con-
troller with multiple linearization and Section 4 to nu-
merical illustrations of its properties and for compari-
son with the bicriterial controller which utilizes global
estimates only. Eventually, the results are summarized
in Section 5.

2. PROBLEM STATEMENT

Consider the discrete time stochastic system

sk+1 =A(θk)sk + B(θk)uk + wk, (1)
θk+1 =8kθk + εk, (2)

yk =Csk + vk, (3)

where k = 0, 1, . . . , N − 1 denotes time instants,
sk ∈ R

n represents the state vector of the controlled
system, θk ∈R

p the vector of parameters, yk ∈R
m the

measurement vector of the controlled system, uk ∈R
r

is the control input vector and wk ∈ R
n, εk ∈ R

p,
vk ∈ R

m are the vectors of independent random
quantities. The elements of the matrices A(θk) and
B(θk) are known linear functions of the unknown
random parameters θk . Dimensions of the matrices
A(θk) and B(θk) correspond with dimensions of the
state vector sk and the control input uk , respectively.
The matrices C and 8k are know and have appropriate
dimensions. The random processes {wk}, {εk} and
{vk} are white mutually independent sequences and
independent of the random quantities s0 and θ0 as
well. The probability density function (pdf) of the
random quantities s0, θ0, wk , εk , vk ∀k are supposed
to be known.

As it was mentioned earlier, each objective of the
controller will be reflected by a separate criterion. The

first used criterion, concerning the control objective, is
suggested in the following form

J c
k (uk) =E

{

(

yk+1 − ȳk+1
)T V k+1

(

yk+1 − ȳk+1
)

+

+uT
k W k uk

∣

∣

∣
Ik

}

,

(4)

where ȳk+1 ∈ R
m is the setpoint vector. The posi-

tive semidefinite matrix V k+1 and the positive definite
matrix W k are suitably selected symmetric matrices.
Ik = (uk−1

0 , yk
0) represents information available up

to the time instant k. Besides having to rate the control
quality, the criterion (4) is designed to enable analyti-
cal derivation of the control law. The control found us-
ing (4) is so called caution control which can consider,
to a certain degree, uncertainty in knowledge of the
nonmeasurable parameters and states of the controlled
system. Uncertainty is respected only partially due to
the fact that the controller can take into account, in
probabilistic sense, only the next time instant.

The control gained using (4) reflects only one aspect of
dual control. In order to obtain the second one which
would embody the so-called active learning property,
the second criterion will be used. It rates quality of
estimation process. This criterion is chosen as

J e
k (uk) = E

{

(

yk+1 − ŷk+1
)T

Vk+1×

×
(

yk+1 − ŷk+1
)

∣

∣

∣
Ik

}

,
(5)

where ŷk+1 ∈ R
m is the one step ahead prediction

vector of the controlled system output and the matrix
Vk+1 is positively definite. The sought control input
uk is such as to maximize criterion (5) on a specified
domain. This domain is set by choosing convenient
coupling condition between both criteria so that feasi-
ble compromise between these two criteria is ensured
without necessity to employ multicriterial optimiza-
tion methods which are usually computationally de-
manding.

Outgoing from the character of dual control that con-
sists of two components, caution and active learning, it
is reasonable to search the extreme of the criterion (5)
in suitably selected domain �k

�k = [uc
k − δk, uc

k + δk], (6)

of the caution control uc
k

uc
k = argmin

uk

J c
k (uk) (7)

gained by minimization of the criterion (4)

The choice of the vector δk stems from reasoning that
it is necessary to enrich the caution control with prob-
ing in proportion to uncertainty of the nonmeasurable
quantities of the controlled system. This uncertainty
is naturally represented by conditional covariance ma-
trix Pk of the filtering pdf of these quantities. The pdf
is obtained by nonlinear filtering methods. The vector
δk depends on Pk thus

δk = f (Pk) , (8)



where the function f (Pk) can be chosen as

f (Pk) = ηtrPk, η ≥ 0. (9)

The bicriterial control u∗
k is then searched as

u∗
k = argmax

uk∈�k

J e
k (uk) . (10)

The cautious control uc
k is then obtained from the

condition (4) as follows

uc
k = −

[

Wk + E
{

BT (θk)CT V k+1C B(θk)
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∣Ik

}]−1
×

×
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(11)

the bicriterial control is given as

u∗
k =uc

k + δk sign (ωk) , (12)

where
ωk =J e

k
(

uc
k + δk

)

− J e
k

(

uc
k − δk

)

=

=4δT
k E

{

[B(θk) − B(θ̂k)]
T CT

Vk+1×

×C[A(θk)sk − A(θ̂k)ŝk]
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∣Ik
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+ 4δT
k E

{

[B(θk) − B(θ̂k)]
T CT

Vk+1×

×C[B(θk) − B(θ̂k)]
∣

∣Ik

}

uc
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(13)

The sign of the intentional probing δk sign (ωk) de-
pends on the values of ŝk , uc

k and on the part of Pk
corresponding to the system parameters θk . In case of
independency of the known matrix A on the parame-
ters θk the intentional probing retains the sign of the
caution control. In case that also the known matrix B
is independent of parameters θk the variable ωk will
be equal to zero and hence there will be no probing at
all.

In order to evaluate the relations (11), (13) it is neces-
sary to perform state and parameter estimation. The
evaluation of the mean values requires knowledge
state and parameter joint pdf. This pdf has to be ob-
tained using a suitable nonlinear filtering method.

Heretofore the type of pdf’s of all the random quan-
tities s0, θ0, wk , εk , vk ∀k has not been intentionally
specified. The derivation of the bicriterial control is
not affected by the type of pdf’s of these quantities.
If non-Gaussian pdf’s are used for description of the
disturbances and the initial augmented state, then it is
inevitable to employ a global filtering method in order
to maintain sufficient quality of estimates.

Let’s suppose that all the non-Gaussian pdf’s are in the
form of the Gaussian mixture

p(ξ)
1
=

∑̀

i=1

αiN (ξ̂i , 4i ), (14)

where αi ≥ 0,
∑`

i=1 αi = 1, ξ̂i denotes the
mean value and 4i the covariance matrix of ξ. Such
representation makes an approximation of virtually
any pdf possible. Moreover it can be employed for
modeling e.g. of abrupt state or parameter changes
(Šimandl, 1996) and/or outliers in measurements
(Šimandl, 1997), respectively.

A natural choice of global nonlinear estimation method
in case where the pdf’s are supposed in form (14)
seems to be the GSM. The basic idea behind the
GSM is deploying multiple Extended Kalman filters
(EKF’s) providing local estimates in form of Gaussian
pdf parameters. The EKF’s are accompanied with an
algorithm for weight evaluation and if necessary with
suitable algorithm that reduces fast growing number
of EKF’s and thus reduces computing demands of the
algorithm.

Ordinary only the global point estimate provided by
the GSM would be used in order to determine the
mean values in relations (11), (13). This approach pro-
vides reasonable control quality (Šimandl and Flı́dr,
2001). However, such control scheme does not make
full use of the information provided by the GSM.
The next section will thus cope with an alternative
controller scheme respecting character of the GSM
producing approximate pdf in the form of a Gaussian
mixture.

3. BICRITERIAL DUAL CONTROL WITH
MULTIPLE LINEARIZATION

As it was mentioned in previous section the simplest
technique to bicriterial control evaluation is to use a
point estimate. However the GSM producing filtering
pdf given by a set of local estimates will be used in this
section as a convenient tool for estimation of unknown
state and parameters. From the estimation point of
view the system is described by relations

xk+1 = f k(uk, xk) + (wk, εk)
T (15)

yk = hk(xk) + vk, (16)

where the augmented state vector xk is defined as

xk =

(

sk
θk

)

(17)

and the nonlinear vector functions f (uk, xk), h(xk)

are specified as

f k(uk, xk) =

(

8kθk
A(θk)sk + B(θk)uk

)

(18)

hk(xk) = (O|C) xk, (19)

where O is zero matrix.

The nonlinear vector functions (15) and (16) are lin-
earized (Šimandl and Flı́dr, 2001) at each time instant
in multiple points specified by Gaussian mixture terms
describing the predictive and the filtering pdf respec-
tively. The estimation is thus divided among multi-
ple EKF’s. The GSM enhances the local estimates



provided by the EKF’s with an algorithm for appropri-
ate mixture weights evaluation. It is necessary to cope
with possibly growing mixture terms number e.g. with
specifying fixed maximum mixture terms number.

In Figure 1 a typical structure of the bicriterial con-
troller employing the GSM for state estimation is de-
picted. In such a case the bicriterial controller employs
the global point estimate. For evaluation of equations
(11) and (13) it is sufficient to determine only the first
three moments of the filtering pdf given by weighted
mixture of Gaussians. Calculation of the third moment
can be computationally very demanding. It is possible
to simplify calculation assuming mutual independence
of the unknown parameters θk+1 and the state sk+1.
In such a case it is necessary to know only the first
two moments of the filtering pdf given as a Gaussian
mixture (14) in the following form

x̂k =E {xk |Ik} =
∑̀

i=1

αki E {xk |Ik, i} =
∑̀

i=1

αki x̂ki

(20)

Pk = cov(xk |Ik) =
∑̀

i=1

αki

(

Pki + x̂ki x̂T
ki

)

(21)

where x̂ki and Pki are mean and covariance matrix of
the filtering pdf provided by i-th EKF, respectively.
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Fig. 1. Scheme of bicriterial controller where
x̂

′

ki = E {xk |Ik−1, i} , P
′

ki = cov(xk|Ik−1, i)

This bictriterial controller is straightforward and pro-
vides plausible control performance which is better
than caution control. However, taking into account the
nonlinear character of the control law (11) it is natural
to assume, it could provide different performance by
coupling the bicriterial controller directly with local
estimates provided by the EKF’s. This means that
the bicriterial controller will be linearized in multiple
points as well. The points are identical to those used
within the EKF’s. This controller scheme is depicted
in Figure 2 and can be described by the following
equations

u∗
k =

∑̀

i=1

αi u∗
ki (22)

where

u∗
ki =uc

ki + δk sign (ωki ) . (23)

uc
ki and ωki are derived from the equations (11) and

(13) under the assumption that for evaluation of all
the means the pdf provided by i-th EKF is used. The
equation (22) can be rewritten as

u∗
k =uc

k + δk
∑̀

i=1

αi sign (ωki ) . (24)

Controlled
System

u∗
k yk

x̂k1 , Pk1

x̂
′
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′
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x̂
′
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′
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′
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1stBC

2ndEKF

2ndBC

`thEKF

`thBC

Weights and control evaluator

Bicriterial Controller with Multiple Linearization

u∗
`

u∗
2u∗

1

Fig. 2. Scheme of bicriterial controller with multiple
linearization

These two controller schemes should generally pro-
vide different control sequence. It stems from the fact
that in general case the next relation concerning prob-
ing signals is fulfilled

δk sign (ωk) 6=δk
∑̀

i=1

αi sign (ωki ) . (25)

It means the equality between probing evaluated upon
knowledge of global point estimate and the sum of
probing depending on local estimates given by sepa-
rate EKF’s is not guaranteed. It follows from the fact
that the probing in case of multiple linearization is
evaluated on different domains

�ki = [uc
ki − δk, uc

ki + δk], i = 1, . . . , `. (26)

It is possible to assume that the difference in retrieval
of the probing signal may bring some benefit regard-
ing the overall control quality. This assumption stem
from the fact that the probing signal is composed from
` probing signals designed for each node represented
by one EKF. That means that the probing signal is
designed to improve the quality of the relevant esti-
mate. Unfortunately this assumption cannot be ana-
lytically proven because of the inherent nonlinearities
and uncertainties. Validity of the relation (25) will
be demonstrated by comparison of probing signals of
both bicriterial controllers and their impact on control
quality will shown in some numerical examples.



4. NUMERICAL ILLUSTRATIONS

To compare bicriterial controller with multiple lin-
earization and bicriterial controller utilizing a global
point estimate only, the following index is chosen as a
measure of the control performance

M =

√

√

√

√

1
N

N
∑

k=1

(yk − ȳk)
2, (27)

where yk represents the measurement of the controlled
SISO system, ȳk is the reference value and N deter-
mines the length of each simulation. The expected
value M̂ = E {M} is estimated using 5000 Monte
Carlo simulations.

The comparison of behavior of both controller designs
will be demonstrated in two examples. In both ex-
amples the parameters of the criterion (4) are given
as Vk+1 = 1 and Wk+1 = 0.001 and the parameter
in criterion (5) is given as Vk+1 = 1.

Example 4.1. The first comparison will be performed
for first order SISO system with time varying param-
eters θk = (θ1k, θ2k)

T described by the following
relations

sk+1 =θ1ksk + θ2kuk + wk, (28)
θk+1 =θk + εk, (29)

yk =sk + vk . (30)

The prior pdf of the parameters is Gaussian

p(θ0) = N

(

(0.8, 1)T , I
)

(31)

and the parameter noise is supposed to be Gaussian
mixture

p(εk) =0.98N

(

(0, 0)T ,

(

10−4 0
0 10−4

))

+

+0.02N

(

(0, 0)T ,

(

0.04 0
0 0.04

))

.

(32)

This mixture can be seen as a model of abrupt pa-
rameter changes (Šimandl, 1996). All the remaining
random quantities wk , vk and s0 are described by

p(wk) = N (0, 0.5) (33)
p(vk) = N (0, 0.09) (34)
p(s0) = N (0.13, 0.25) . (35)

The parameter η in (9) is chosen as η = 5.7.

Example 4.2. The following stochastic system

sk+1 =

(

0 1
θ1k θ2k

)

sk +

(

θ3k
θ4k

)

uk + wk, (36)

yk = (1, 1)sk + vk, (37)

is used for the second comparison. The random quan-
tities wk , vk and s0 are described by

p(wk) = N

(

(0, 0)T , 10−4 I
)

(38)

p(vk) = N

(

0, 10−3
)

(39)

p(s0) = N

(

(0, 0)T , 5I
)

. (40)

In this example only one parameter is considered as
time varying, the parameter vector is given as

θk = (−2.0427, 0.3427, 0, θ4k)
T (41)

where the parameter θ4k evolves according to the
relation

θ4k+1 = θ4k + εk, (42)

with a priori pdf p(θ4,0) = N (1, 0.01). The pdf of
this parameter noise is represented by uniform random
quantity as εk ∼ U(−0.01, 0.01). This distribution
will be approximated using a Gaussian mixture

p(εk) =
∑̀

i=1

αiN (ε̂ki , cov εki ) (43)

where weights, means and covariance matrices are
given in Table 1

Table 1. Parameter of Gaussian mixture
approximating uniform distribution U(−0.01, 0.01)

i αi εki cov εki
1 0.1656 -0.0080 1.65e-06
2 0.2427 -0.0034 6.25e-06
3 0.1973 -0.0004 1.163e-06
4 0.2471 0.0041 4.90e-06
5 0.1473 0.0083 1.20e-06

The prior pdf of parameters θ0 is Gaussian

p(θ0) = N

(

θ̂0, diag(1, 1, 1, 0.01)

)

, (44)

where

θ̂0 = (−2.0427, 0.3427, 0, 1)T (45)

The function diag(·) denotes diagonal matrix. The
parameter η in (9) is chosen as η = 1.5.
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Fig. 3. The difference between probing signals gen-
erated by the Bicriterial controller (BC) and the
multiple linearized BC from example 4.1.

The comparison of probing signals for both examples
is depicted in Figures 3, 4. The Figures show the
difference between probing generated by bicriterial
controller which used global point estimate only and
the multiple linearized bicriterial controller.
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Fig. 4. The The difference between probing signals
generated by the Bicriterial controller (BC) and
the multiple linearized BC from example 4.2.

As it was expected the probing signals indeed differ.
However the numerical examples also showed that
application of the BC with multiple linearization does
not bring substantial improvement of control quality
as it is shown in Table 2.

Table 2. Control quality comparison using index M̂

Example 4.1 Example 4.2
Bicriterial control 4.8174 3.8841
BC with multiple

linearization 4.8146 3.8829

5. CONCLUSION

The bicriterial controller with multiple linearization
was proposed for the discrete-time non-Gaussian
stochastic system with unknown parameters. Structure
of the proposed bicriterial controller corresponds to
structure of the estimator and consists of a set of local
bicriterial controllers connected with corresponding
local estimators. The probing signal generated by this
multiple linearized controller differs from the probing
of the controller that uses the global point estimate
only and induces slightly better control quality. Both
considered bicriterial dual controllers give substantial
quality improvement comparing to caution control.
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