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Abstract: A broad class of nonlinear systems can be modeled by the Volterra series
representation. However, the practical use of such a representation is often limited
due to the large number of parameters associated with the Volterra filter structure.
This paper is concerned with the problem of identification of third-order Volterra
systems. The SVD technique is used to represent the quadratic Volterra kernel
and a tensorial decomposition called PARAFAC is used to represent the cubic
one. These decompositions allow to significantly reduce the parametric complexity
of the Volterra model. Then, a new algorithm called the Alternating Recursive
Least Squares (ARLS) algorithm is proposed to estimate the parameters of the
linear, quadratic and cubic Volterra kernels. Simulation results show the ability of
the proposed solutions to achieve an important complexity reduction and a good
identification. Copyright c©2005 IFAC
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1. INTRODUCTION

The identification of nonlinear dynamical systems
from a given input output data set has attracted
considerable interest since many physical systems
exhibit nonlinear characteristics. The Volterra
model structure can be used to represent a broad
class of nonlinearities. The output of a discrete-
time, time invariant, cubic Volterra filter is given
by :

y(n) =
3∑

m=1

∞∑

n1=1

· · ·

∞∑

nm=1

hm(n1, . . . , nm)

m∏

j=1

u(n− nj)

(1)

where u, y and hm are the input signal, the output
signal and the parameters of the mth order kernel,
respectively.

In practice, the infinite sum in (1) may be trun-
cated to a finite sum if the system has fading
memory (Boyd and Chua, 1985). It has been
shown by (Boyd and Chua, 1985) that any time-
invariant nonlinear system with fading memory
can be well approximated by a finite Volterra
series representation to any arbitrary precision.
Hence, the class of truncated Volterra models is
attractive for nonlinear system modeling.

A very nice property of the Volterra model (1)
is that it is linear in its parameters, so stan-



dard parameter estimation techniques like Least
Squares (LS) method can be applied. However, the
large number of parameters associated with the
Volterra models limit their practical use to prob-
lems involving only small values for the kernels
memory and the truncation order. This limitation
arises because the estimation of a large number of
parameters may be problematic, but also design
procedures based upon such models may be cum-
bersome. To eliminate this drawback, two ways
can be followed :

• to arrange the kernels coefficients in ma-
trices that are decomposed in applying a
reduced order Singular Value Decomposi-
tion (SVD) which leads to a low complexity
parallel-cascade realization of the Volterra
filter (Panicker and Mathews, 1998),

• to expand the kernels on an orthonormal
basis such as the Laguerre functions basis
((Campello et al., 2004),(Dumont and Fu,
1993)) or Generalized Orthonormal Bases
(GOB) ((Favier et al., 2003),(Kibangou et
al., 2003)).

The purpose of this paper is first to propose third-
order Volterra models with a reduced complexity.
By considering the quadratic kernel as a matrix
and the cubic one as a third-order tensor, we use a
Singular Value Decomposition (SVD) and a tensor
decomposition called PARAFAC for decomposing
these two kernels respectively. The correspond-
ing model called SVD-PARAFAC based Volterra
model is presented in section 2. Then in section 3 a
new Alternating Recursive Least Squares (ARLS)
algorithm is proposed to estimate the parameters
of such Volterra models. In section 4, the perfor-
mance of the proposed approach is evaluated by
means of simulations before concluding in section
5.

2. THE SVD-PARAFAC BASED VOLTERRA
MODEL

2.1 The Singular Value Decomposition

The SVD has been applied to signal processing
problems since the late 1970’s and has been de-
scribed as the most informative general represen-
tation of a matrix. The SVD of a (m× n) matrix
X is a factorization of the form :

X = UΛV T (2)

where U and V are respectively (m×m) and
(n× n) matrices the columns of which are re-
spectively the left singular vectors and the right
singular vectors of X and satisfying UTU = Im
and V TV = In, Λ is a (m × n) matrix with
all entries zeros except R positive diagonal en-
tries {λr}, where {λr} are the singular values of

X satisfying λ1 ≥ λ2 ≥ · · · ≥ λR > 0 with
R = rank(X) ≤ min(m,n). We can also write the
SVD of X as :

X =

R∑

r=1

λrU.rV
T
.r (3)

where U.r and V.r are the rth column of U and V
respectively.

We can rewrite X as :

X =

R∑

r=1

A.rB
T
.r (4)

where

A.r = λrU.r (5)

B.r = V.r (6)

with the following constraints :

ATA = Λ2
R (7)

BTB = IR (8)

where Λ2
R = diag (λ2

1, . . . , λ
2
R) and IR is the

identity matrix of order R.

The scalar representation of (4) is :

X(n1, n2) =

R∑

r=1

an1rbn2r (9)

where an1r represents the (n1, r) element of the
matrix A and bn2r the (n2, r) element of the
matrix B.

2.2 The PARAFAC Decomposition

The PARAFAC (PARAllel FACtor) decompo-
sition also called CANDECOMP (CANonical
DECOMPosition) was introduced by Harshman
(1970) (Harshman, 1970) and by Caroll and
Chang (1970) (Carroll and Chang, 1970) in order
to reduce the complexity of an N th order tensor.
This decomposition entirely preserves the infor-
mation contained in the original tensor.

We define horizontal, vertical and frontal matrices
of a third-order (N1 ×N2 ×N3) tensor H.

• Hn1.. (n1 = 1, . . . , N1) are (N2×N3) matrices
such as Hn1..(n2, n3) = H(n1, n2, n3).

• H.n2. (n2 = 1, . . . , N2) are (N3×N1) matrices
such as H.n2.(n3, n1) = H(n1, n2, n3).

• H..n3
(n3 = 1, . . . , N3) are (N1×N2) matrices

such as H..n3
(n1, n2) = H(n1, n2, n3).

where H(n1, n2, n3) is the element (n1, n2, n3) of
the tensor H. The construction of the matrices
Hn1.., H.n2. and H..n3

is described in figure 1.



Hn1. .  (n1=1,...,N1) H. n2 .  (n2=1,...,N2) H. . n3  (n3=1,...,N3)

Fig. 1. Horizontal, vertical and frontal matrices
Hn1.., H.n2. and H..n3

The scalar representation of the PARAFAC de-
composition of a third-order (N1×N2×N3) tensor
H is written as :

H(n1, n2, n3) =

P∑

p=1

cn1pdn2pen3p (10)

where cn1p, dn2p and en3p constitute the elements
of three matrices C, D and E with respective
dimensions (N1 × P ), (N2 × P ) and (N3 × P ),
and P is the number of PARAFAC model factors.
P is the rank of the tensor H according to Kruskal
(Kruskal, 1977).

2.3 The SVD-PARAFAC based Volterra model

The input/output relation of a discrete-time, time
invariant third-order Volterra system with M -
memory can be written as :

ŷ(n) =

M∑

n1=1

h1(n1)u(n− n1)

+

M∑

n1=1

M∑

n2=1

h2(n1, n2)u(n− n1)u(n− n2)

+

M∑

n1=1

M∑

n2=1

M∑

n3=1

h3(n1, n2, n3)

×u(n− n1)u(n− n2)u(n− n3) (11)

where {h1(n1)}, {h2(n1, n2)} and {h3(n1, n2, n3)}
represent the coefficients of the linear, quadratic
and cubic Volterra kernels respectively. The first
kernel is a M-vector, the second one is a (M ×M)
matrix with rank R and the third one can be
considered as a third-order (M ×M ×M) tensor
with rank P .

By using the scalar representation (9) of the
SVD and that of PARAFAC (10), equation (11)
becomes equation (13) shown in next page.

The input/output relation (13) can be imple-
mented in using a parallel-cascade structure,
as shown in figure 2, where

U(n) =
[
u(n− 1) · · · u(n−M)

]T
, h1 is the vec-

tor containing the coefficients of the linear kernel.
A.i and B.j represent respectively the ith column
of A and the jth column of B and the boxes
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Fig. 2. Parallel-cascade realization of the SVD-
PARAFAC based third-order Volterra model

of stage r correspond to the convolution opera-
tions UT (n)A.r and UT (n)B.r. For the third-order
kernel, the boxes of stage p correspond to the
convolution operations UT (n)C.p, U

T (n)D.p and
UT (n)E.p.

The cubic kernel in (11) can be viewed as a third-
order (M × M × M) tensor with a parameter
complexity C3 = M3 in terms of its coefficients
number. The quadratic kernel has a complexity
C2 = M2 and the linear one C1 = M . So,
the complexity of a third-order standard Volterra
model is CStandard = M +M2 +M3.

The PARAFAC based third-order kernel com-
plexity is Cparafac = 3MP and the SVD-based
second-order kernel complexity is CSV D = 2MR.
So, the complexity of the SVD-PARAFAC based
Volterra model is :
CSV D−PARAFAC = M(1 + 2R+ 3P ).

Using SVD-PARAFAC decomposition, the Ra-
tio of Complexity Reduction (RCR) with respect
to the standard third-order Volterra model is
RCR = 1+2R+3P

1+M+M2 . When P � M and R � M , a
significant complexity reduction can be achieved.

3. THE ARLS ALGORITHM

Using the scalar representation of the SVD and
PARAFAC given by (9) and (10), we have three
different writings of the SVD-PARAFAC based
third-order Volterra model output. Let us define :

ψA
r (n) =

M∑

n2=1

bn2ru(n− n2) (14)

ψB
r (n) =

M∑

n1=1

an1ru(n− n1) (15)

and



ŷ(n) =

M∑

n1=1

h1(n1)u(n − n1) +

M∑

n1=1

M∑

n2=1

(
R∑

r=1

an1rbn2r

)
u(n− n1)u(n− n2)

+

M∑

n1=1

M∑

n2=1

M∑

n3=1

(
P∑

p=1

cn1pdn2pen3p

)
u(n− n1)u(n − n2)u(n− n3) (12)

=

M∑

n1=1

h1(n1)u(n − n1) +

R∑

r=1

(
M∑

n1=1

an1r u(n− n1)

)(
M∑

n2=1

bn2ru(n− n2)

)

+

P∑

p=1

(
M∑

n1=1

cn1p u(n− n1)

)(
M∑

n2=1

dn2pu(n− n2)

)(
M∑

n3=1

en3pu(n− n3)

)
(13)

φC
p (n) =

M∑

n2=1

dn2pu(n− n2)

M∑

n3=1

en3pu(n− n3) (16)

φD
p (n) =

M∑

n1=1

cn1pu(n− n1)

M∑

n3=1

en3pu(n− n3) (17)

φE
p (n) =

M∑

n1=1

cn1pu(n− n1)

M∑

n2=1

dn2pu(n− n2) (18)

3.1 The first writing of the model output

Equation (13) can be written as :

ŷ(n) =

M∑

n1=1

[
h1(n1) +

R∑

r=1

an1rψ
A
r (n) +

P∑

p=1

cn1pφ
C
p (n)

]

×u(n− n1) (19)

=

[
h1

vec(A)
vec(C)

]T

︸ ︷︷ ︸
ΘT

1

([
1

ΨA(n)
ΦC(n)

]
⊗ U(n)

)

︸ ︷︷ ︸
P1(n)

(20)

= ΘT
1 P1(n) (21)

where

ΨA(n) =
[
ψA

1 (n) ψA
2 (n) · · · ψA

R(n)
]T

(22)

ΦC(n) =
[
φC

1 (n) φC
2 (n) · · · φC

P (n)
]T

(23)

3.2 The second writing of the model output

Equation (13) can also be written as :

ŷ(n) = yL(n) +

M∑

n2=1

[
R∑

r=1

bn2rψ
B
r (n) +

P∑

p=1

dn2pφ
D
p (n)

]

×u(n− n2) (24)

= yL(n) +

[
vec(B)
vec(D)

]T

︸ ︷︷ ︸
ΘT

2

([
ΨB(n)
ΦD(n)

]
⊗ U(n)

)

︸ ︷︷ ︸
P2(n)

(25)

= yL(n) + ΘT
2 P2(n) (26)

where

yL(n) =

M∑

n1=1

h1(n1)u(n− n1) (27)

ΨB(n) =
[
ψB

1 (n) ψB
2 (n) · · · ψB

R (n)
]T

(28)

ΦD(n) =
[
φD

1 (n) φD
2 (n) · · · φD

P (n)
]T

(29)

3.3 The third writing of the model output

The third writing of equation (13) is :

ŷ(n) = yL(n) + yQ(n)

+

M∑

n3=1

(
P∑

p=1

en3pφ
E
p (n)

)
u(n− n3) (30)

= yL(n) + yQ(n) + [vec(E)]T︸ ︷︷ ︸
ΘT

3

(ΦE(n) ⊗ U(n))︸ ︷︷ ︸
P3(n)

(31)

= yL(n) + yQ(n) + ΘT
3 P3(n) (32)

where

yQ(n) =

R∑

r=1

ψA
r (n)ψB

r (n) (33)

ΦE(n) =
[
φE

1 (n) φE
2 (n) · · · φE

P (n)
]T

(34)

3.4 The ARLS algorithm

The ARLS algorithm uses the three writings of
the SVD-PARAFAC based Volterra model output
(21), (26) and (32). It updates the linear kernel
h1, the matrices A and B of the quadratic kernel
SVD decomposition and the matrices C, D and
E of the cubic kernel PARAFAC decomposition
by minimizing the following least squares cost
function η in an alternating way :

η(N) =

N∑

n=1

(y(n) − ŷ(n))
2

(35)

where y(n) denotes the output of the system to
be modeled and ŷ(n) denotes the output of the
SVD-PARAFAC based Volterra model given by
(13).

By substituting the output of the model ŷ(n) by
its three writings (21), (26) and (32), the cost
function η(N) can be rewritten as :
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Fig. 3. Update of the SVD-PARAFAC based Volterra
model components using the ARLS algorithm
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Fig. 4. Use of a SVD-PARAFAC based third-order
Volterra model to represent a nonlinear satellite chan-
nel

η1(N) =

N∑

n=1

(
y(n) − ΘT

1 P1(n)
)2

(36)

η2(N) =

N∑

n=1

(
y(n) − yL(n) − ΘT

2 P2(n)
)2

(37)

η3(N) =

N∑

n=1

(
y(n) − yL(n) − yQ(n) − ΘT

3 P3(n)
)2

(38)

By alternatively minimizing the cost functions
η1(N), η2(N) and η3(N) with respect to Θ1, Θ2

and Θ3 respectively, we update the estimated
matrices A, B, C, D and E, and the linear kernel
h1. The ARLS algorithm is illustrated by means
of figure 3 and its equations are summarized in
table 1.

4. SIMULATION RESULTS

The simulated system is a simplified model of
a nonlinear satellite channel (Saleh, 1998) repre-
sented in figure 4 and characterized by two fourth-
order low-pass linear filters denoted by HB(z)
and HC(z), and a memoryless nonlinear device
defined by its input-output characteristic A(r)
represented in figure 4 and modeled by means of
a third-order polynomial.

The performance of the proposed identification
method is evaluated by using the Normalized
Mean Square Error (NMSEoutput) between the

system output y(n) and the output ̂̂y(n) of
the SVD-PARAFAC based Volterra model recon-

Table 1. The ARLS algorithm

(1) Initialization

• Θ̂1(0), Θ̂2(0) and Θ̂3(0)

•

{
Q1(0) = IM(P+R+1),

Q2(0) = IM(P+R),

Q3(0) = IMP

(2) Update of the SVD-PARAFAC based

Volterra model components

• U(n) =
[
u(n− 1) · · · u(n−M)

]T

•





Calculate ψA
r (n) and φC

p (n)

Construct ΨA(n) and ΦC(n)

P1(n) =
[

1 ΨT
A(n) ΦT

C(n)
]T

⊗ U(n)

ε1(n) = y(n) − PT
1 (n) Θ̂1(n− 1)

K1(n) =
Q1(n− 1)P1(n)

1 + PT
1 (n)Q1(n− 1)P1(n)

Q1(n) = [I −K1(n)PT
1 (n)]Q1(n− 1)

Θ̂1(n) = Θ̂1(n− 1) +K1(n)ε1(n)

Θ̂1(n) =
[
ĥT
1 (n) (vec Â(n))T (vec Ĉ(n))T

]T

•





Calculate yL(n) , ψB
r (n) and φD

p (n)

Construct ΨB(n) and ΦD(n)

P2(n) =
[

ΨT
B(n) ΦT

D(n)
]T

⊗ U(n)

ε2(n) = y(n) − yL(n) − PT
2 (n) Θ̂2(n− 1)

K2(n) =
Q2(n− 1)P2(n)

1 + PT
2 (n)Q2(n− 1)P2(n)

Q2(n) = [I −K2(n)PT
2 (n)]Q2(n− 1)

Θ̂2(n) = Θ̂2(n− 1) +K2(n)ε2(n)

Θ̂2(n) =
[

(vec B̂(n))T (vec D̂(n))T
]T

•





Calculate yQ(n) and φE
p (n)

Construct ΦE(n)
P3(n) = ΦE(n) ⊗ U(n)
ε3(n) = y(n) − yL(n) − yQ(n)

−PT
3 (n) Θ̂3(n− 1)

K3(n) =
Q3(n− 1)P3(n)

1 + PT
3 (n)Q3(n− 1)P3(n)

Q3(n) = [I −K3(n)PT
3 (n)]Q3(n− 1)

Θ̂3(n) = Θ̂3(n− 1) +K3(n)ε3(n)

Θ̂3(n) = vec(Ê(n))

(3) Reconstruction of the Volterra model kernels

• linear kernel ĥ1.
• quadratic kernel ĥ2 :

ĥ2(n1, n2) =

R∑

r=1

ân1r b̂n2r

• cubic kernel ĥ3 :

ĥ3(n1, n2, n3) =

P∑

p=1

ĉn1pd̂n2pên3p

(4) Go back to step 2 until convergence of the

algorithm

structed with the parameters obtained at the con-
vergence of the ARLS algorithm. It is calculated
as :

NMSEoutput(N) =

∑N

n=1

(
y(n) − ̂̂y(n)

)2

∑N
n=1

y2(n)
(39)



Table 2. NMSEoutput obtained with the SVD-PARAFAC based Volterra model for different
values of P and R

R=1 R=2 R=3 R=4 R=5 R=6

P=1 4.639 10−2 3.448 10−2 2.347 10−2 2.102 10−2 1.974 10−2 1.842 10−2

P=2 4.638 10−2 3.202 10−2 1.947 10−2 1.871 10−2 1.779 10−2 1.681 10−2

P=3 4.331 10−2 3.199 10−2 1.893 10−2 1.843 10−2 1.719 10−2 1.638 10−2

P=4 4.294 10−2 3.124 10−2 1.865 10−2 1.798 10−2 1.681 10−2 1.590 10−2

P=5 4.243 10−2 3.079 10−2 1.802 10−2 1.771 10−2 1.653 10−2 1.545 10−2

P=6 4.228 10−2 3.045 10−2 1.754 10−2 1.722 10−2 1.605 10−2 1.511 10−2
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Fig. 5. NMSEoutput for three different SNRs

The impulse responses of filters HB and HC be-
come smaller than 10−2 after 20 points. Therefore,
we model the simulated system as a cubic Wiener-
Hammerstein model i.e. a symmetric third-order
Volterra filter with memory M=39. Using a SVD-
PARAFAC based Volterra model with M = 39,
P = 1 and R = 1 we achieve an important
complexity reduction RCR = 2.04 10−2.

Figure 5 shows the variation of the NMSEoutput

as a function of the iterations number for three
different SNRs under the same previous condi-
tions (P = 1, R = 1 and M = 39). The input sig-
nal is a gaussian white noise sequence of length
N = 10000 with zero mean and unit variance.
The simulation results were obtained using the
Monte Carlo method with 20 different additive
noise sequences.

Table 2 contains the NMSEoutput in function
of the PARAFAC factors number P and the
SVD factors number R for SNR = 20 dB. The
NMSEoutput slightly decreases as the values of R
and P increase, hence the interest in choosing
small values of P and R to reduce the parametric
complexity.

From these simulation results, we can conclude
that the SVD-PARAFAC decomposition approach
allows to represent a nonlinear satellite channel
with a relatively small modeling error. The choice
of numbers P and R of the PARAFAC and SVD
factors doesn’t influence very much the identifica-
tion performance.

5. CONCLUSION

In this paper, we have presented a new approach
to represent and identify third-order Volterra
models using the Singular Value Decomposition
and the PARAFAC decomposition, which allows
to significantly reduce the parametric complexity
of the corresponding kernels. The ARLS algorithm
has been proposed to identify such a decomposi-
tion. Extension of this work to Volterra models of
order higher than three is under study.

REFERENCES

Boyd, S. and L. O. Chua (1985). Fading memory and
the problem of approximating nonlinear operators
with Volterra series. IEEE Tr. Circuits and Systems

32(11), 1150–1171.
Campello, R. J. G. B., G. Favier and W. C. Amaral (2004).

Optimal expansions of discrete-time Volterra models
using Laguerre functions. Automatica 40, 815–822.

Carroll, J.D. and J. J. Chang (1970). Analysis of individ-
ual differences in multidimensional scaling via an n-
way generalization of ”Eckart-Young” decomposition.
Psychometrika 35, 283–319.

Dumont, G. A. and Y. Fu (1993). Nonlinear adaptive con-
trol via Laguerre expansion of Volterra kernels. Int. J.

Adaptive Control and Signal Processing 7, 367–382.
Favier, G., A. Kibangou and R. J. G. B. Campello (2003).

Nonlinear systems modelling by means of general-
ized orthonormal basis functions. Invited paper, IEEE

Conference on Signals, Systems, Decision and infor-

mation technology, SSD’03, Sousse, Tunisia.
Harshman, R. A. (1970). Foundation of the parafac pro-

cedure : Models and conditions for an ”explanatory”
multimodal factor analysis. UCLA working papers in

phonetics 16, 1–84.
Kibangou, A., G. Favier and M. M. Hassani (2003). A

growing approach for selecting generalized orthonor-
mal basis functions in the context of system modeling.
In: Proc. IEEE-EURASIP Workshop on Nonlinear

Signal and Image Processing, NSIP’03. Grado, Italy.
pp. 1119–1124.

Kruskal, J. B. (1977). Three-way arrays : Rank and
uniqueness of trilinear decompositions, with applica-
tion to arithmetic complexity and statistics. Linear

algebra and its applications 18, 95–138.
Panicker, T. M. and V. J. Mathews (1998). Parallel-

cascade realizations and approximations of trun-
cated volterra systems. IEEE Trans. Signal Process-

ing 46(11), 2829–2832.
Saleh, A. A. M. (1998). Frequency independent and fre-

quency dependent nonlinear models of twt amplifiers.
IEEE Tr. on Communications 29(11), 1715–1720.


