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Abstract: Friction modeling and identification is a prerequisite for the 
accurate control of electromechanical systems.  This paper considers the 
identification and control of friction in a high load torque DC motor to the 
end of achieving accurate tracking. Model-based friction compensation in 
the feedforward part of the controller is considered. For this purpose, 
friction model structures ranging from the simple Coulomb model through 
the recently developed Generalized Maxwell Slip (GMS) model are 
employed.  The performance of those models is compared and contrasted in 
regard both to identification and to compensation. It turns out that the 
performance depends on the prevailing range of speeds and displacements, 
but that in all cases, the GMS model scores the best.  Copyright © 2005 
IFAC 
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1. INTRODUCTION 

The problem of accurate control of electromechanical 
systems is very important in many industrial 
applications where such devices, e.g. motors, are 
themselves, or form essential parts of, positioning 
/tracking systems.  In this paper, we consider a DC 
motor driving an inertial load with the aim of 
identifying and compensating the friction 
disturbances arising from the ball bearings. 

A DC motor consists of two sub-processes: electrical 
and mechanical. The electrical sub-process consists 
of armature inductance, armature resistance and the 
magnetic flux of the stator. A second sub-process in 
the motor is a mechanical one. It consists of the 
inertia of the motor and a load (J). The difference in 
motor speed is caused by the electromagnetic 
moment generated by the amplifier current (τm), load 
(τ0) and friction of the motor (τf). The electrical sub-
process will not be discussed in this paper, which 
will deal with the identification, modeling and 
compensation of the friction in the ball bearings of 
the motor. 

In the literature, identification of friction in a motor 
system usually considers only classical friction 
models, such as Coulomb and viscous friction. Pre-

sliding motion, which is apparent in many friction 
investigations (Prajogo, 1999), is usually neglected. 
However, the Coloumb model defines the friction 
force only for v≠0; when v=0 the characteristic 
simply sets the friction force below the static force 
value, where v represents velocity. This makes the 
model quite complex to simulate, since it requires 
accurate detection of the velocity zero crossing. It is 
also impractical for friction compensation at motion 
stop and reversal, where the effect of stick-slip 
motion arises. In fact, motion never starts or stops 
abruptly and micro-sliding displacements are actually 
observed (Armstrong-Hélouvry, 1991). 

Two different friction regimes have been 
distinguished in the literature: the pre-sliding regime, 
where the friction force appears predominantly as a 
function of displacement; and the sliding regime, 
where the friction force is a function of sliding 
velocity (Armstrong-Hélouvry, 1991, Canudas de 
Wit et al., 1995, Swevers et al., 2000, Al-Bender et 
al., 2004). The pre-sliding regime is taken into 
account in some advanced models, such as LuGre 
model, the Leuven model and the most recent 
Generalized Maxwell-Slip (GMS) model. The LuGre 
model offers a smooth transition of motion from pre-
sliding to sliding regime and vice versa. However, it 



does not accommodate the unique behavior of pre-
sliding faithfully. In fact, the friction force shows 
hysteresis behavior with nonlocal memory in that 
regime (Prajogo, 1999, Swevers et al., 2000). The 
Leuven model succeeded in including this type of 
hysteresis, but introduced some modelling 
complexities and difficulties (Swevers et al., 2000, 
Lampaert et al., 2002). Finally, the GMS model 
manages to overcome those difficulties by modeling 
friction as a Maxwell-Slip model where the slip 
elements satisfy a certain, new state equation. As a 
result, the GMS model is able to predict not only the 
friction behavior in pre-sliding regime with nonlocal 
memory hysteresis, but also the friction force in 
sliding regime, which behaves in a similar way to 
that in the LuGre model. 

An important feature in the friction identification 
procedure in this paper is that we will use only a 
single set of experiments to identify all the unknown 
parameters together, using a suitable optimization 
method, namely the Nelder-Mead Simplex algorithm. 

Once the friction models have been optimized, 
position control incorporating friction compensation 
is performed. For this purpose, the inertial force and 
friction behavior are compensated for using a 
feedforward control, while a simple (PID) feedback 
part is included to track set-point changes and to 
suppress unmeasured disturbances. 

In the following, section 2 formulates the DC motor 
torque balance, and outlines the friction models used 
in this investigation. Section 3 describes the 
experimental apparatus, while section 4 discusses the 
identification procedure. The identification results 
are discussed in section 5. Thereafter, the friction 
compensation scheme is sketched in section 6, while 
the compensation results are discussed in section 7. 
Finally, appropriate conclusions are drawn in Section 
8. 

 
2. MOTOR TORQUES 

In general, a DC motor can be viewed as a black box 
with two inputs: current and load torque, and an 
output angular displacement (or velocity). Torque 
balance for a DC motor can be written as: 

τm = τi + τf +τ0 , (1) 

where τm is the motor torque generated by the 
amplifier current, τi is the inertial torque from motor 
armature and shaft, τf is the friction torque and τ0 is 
the load torque. 

Due to the limitation of the amplifier current in the 
motor, it can be shown that the motor torque τm = Km 
���(i,isat); and the inertial torque θτ ��

mi J= . Motor 
torque is bounded due to the current saturation limit 
of the servo amplifier. The saturation function is 
represented by ���(i,isat), where it has a constant 

value for |i| > isat; and it has a slope of 1 for |i| ≤ isat. 

As for the friction torque τf in equation (1), which is 
our main concern, several models were used as 
described below. 

1.1 Coulomb Friction 
The classical Coloumb model of friction is described 
by a discontinuous relation between the friction force 
and the relative velocity between the rubbing 
surfaces. In this model, when the mass that is 
subjected to friction is slipping, the friction force will 
remain constant until the motion is reversed. 

1.2 Stribeck Friction 
The Stribeck friction consists of (i) a function s(v) 
that is decreasing in the velocity and bounded by an 
upper limit at zero velocity equal to the static friction 
force Fs, and a lower limit equal to the Coulomb 
force Fc., and (ii) a viscous friction part. In this 
approach, the constant portion of the Coulomb model 
is replaced by Stribeck function. Moreover, in order 
to overcome the jump discontinuity of the Coloumb 
model, at v=0, that jump is replaced by a line of finite 
slope, up to a very small threshold �, as shown in 
Figure 1. 

 

Figure 1. Friction curve of Stribeck models 

 
1.3 LuGre Friction 
The above two methods have proven to be 
impractical for friction compensation at motion stop 
and inversion, where the worst effects due to friction, 
namely stick-slip motion, could arise. Motion never 
starts or stops abruptly and pre-sliding displacements 
are actually observed (Prajogo, 1999, Swevers et al., 
2000). Consequently, two different friction regimes 
can be distinguished, i.e. the pre-sliding and the gross 
sliding regimes, as explained in section 1. The LuGre 
model (Canudas de Wit et al., 1995) was the first 
formulation that could effect a smooth transition 
between those two regimes, i.e. without recourse to 
switching functions. It, furthermore, accounts for 
other friction characteristics such as the breakaway 
force and its dynamics. The model achieves this by 
introducing a state variable, representing the average 
deflection of elastic bristles (representing surface 
asperities) under the action of a tangential force, 
together with a state equation, governing this 
variable’s dynamics and friction equation. 

The LuGre model is very popular in the domain of 
control and simulation of friction due to its simplicity 
and the integration it affords of pre-sliding and 
sliding into one model. However, it has been 
subjected to important criticism (Swevers et al., 
2000) in regard to its failure to model pre-sliding/pre-
rolling hysteresis with nonlocal memory. The latter 
authors proposed an extension in form of the Leuven 
model and a subsequent improvement (Lampaert et 
al., 2002), however, not without introducing further 
difficulties. 



1.4 GMS Friction 
The Generalized Maxwell-Slip (GMS) friction model 
(Al-Bender et al., 2004, Lampaert et al., 2003) is a 
qualitatively new formulation of the rate-state 
approach of the LuGre and the Leuven models. The 
GMS model retains the original Maxwell-slip model 
structure (see e.g., Iwan, 1966), which is a parallel 
connection of different elementary slip-blocks and 
springs, but replaces the simple Coulomb law 
governing each block, by another state equation to 
account for sliding dynamics. Thus, the friction force 
is given as the summation of the outputs of the N 
elementary state models. The dynamic behavior of 
each elementary block is represented by one of two 
equations (in which Fi is the elementary friction 
force, ki is the elementary spring constant, and v is 
the velocity): 
• If the model is sticking: 

 vk
dt
dF

i
i = ;   (2) 

• If the model is slipping: 

 ��
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�
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i
i α  (3) 

Each elementary model (or block) corresponds to a 
generalised asperity in the contact surface, where it 
can stick or slip. The asperity will slip if the 
elementary friction force equals the maximum value 
Wi = αi s(v) that it can sustain. In this regime, 
equation (3) will characterize the friction behavior. 
Once the model is slipping, it remains slipping until 
the direction of movement is reversed or its velocity 
approaches zero value. When the asperity is sticking 
the elementary model will act as a spring with 
stiffness of ki. 

 
3. EXPERIMENTAL SETUP 

Experimental identification of friction in a DC motor 
was performed on ABB motor type M19-S, with 
maximum rated torque of 0.49 Nm/amp and armature 
inertia of 0.001 kgm2. To allow a straightforward 
position and velocity data collection on the motor, an 
incremental angular encoder was connected to the 
shaft through a toothed belt and pulleys. The pulleys 
give a reduction ratio of 1:3 to increase the sensitivity 
of the encoder, whose resolution is 5000 pulses per 
revolution. Figure 2 shows a schematic of the 
experimental setup. 

 

 

Figure 2. Schematic of the setup 

4. IDENTIFICATION OF FRICTION MODELS 

The identification experiment was carried out by 
applying an input velocity signal. A special input 
command was designed for this purpose. This 
command signal is composed of a band limited 
random signal with cutoff frequency of 4 Hz, which 
is enveloped by a certain signal. This envelope signal 
is composed of the three first non-zero terms of the 
Fourier series of a rectangular signal, which has 
period of 10 seconds. The purpose of enveloping this 
input signal is to emphasize the behavior of 
presliding friction in the experiment, which 
corresponds to the friction at low velocity and low 
displacement. The signal and its corresponding 
envelope signal are shown in Figure 3. These signals 
were applied through a dSPACE-1104 acquisition 
card to the servo amplifier. The real current input to 
the motor, which is assumed to correspond to the 
torque was measured and recorded using the same 
acquisition unit. 
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Figure 3. Velocity input signal 

 

5. IDENTIFICATION RESULTS 

Fifty thousand points, at one millisecond time 
sampling, were collected for each test. The first 10 
seconds were used as a training set and the remaining 
40 seconds were used as testing set. The Nelder-
Mead Simplex algorithm was used for optimizing the 
parameters in each model. 

Since the system being identified here is (highly) 
nonlinear, error quantification techniques pertaining 
to linear systems, such cross-correlation between 
input, output and residuals, etc., cannot be used. 

Instead, as a measure of performance, the normalized 
mean square error was used, which is defined by: 

�
=

−=
N

N
)ˆ()ˆ(MSE

1

2100

i
ii yyy 2

yσ
 (4) 

where y is the output (in this case is the friction 
force), σy

2 is its variance and the caret denotes an 
estimated quantity. 

The performance values can be seen in Table 1. The 
values between brackets represent the peak-to-peak 
errors that are normalized by the RMS value of the 
actual torques. In this table the performances are 
divided into two groups, one for high velocities and 
the other for low velocities. Each group is calculated 
based on its envelope signal. High velocity 



performance values are calculated at the instances 
when the envelope velocity is high, and low velocity 
performance values are calculated when the envelope 
velocity is low. 

The estimated torques of the modeling technique and 
the measured torque are shown in Figure 4, for 
Coulomb, Stribeck-Coulomb, LuGre and GMS (with 
4 elements), from left to right and top to bottom 

respectively. It can be clearly seen that the 
identification results of the classical friction models 
fall far from the actual value in some regions, 
especially in the low velocity regions (approximately 
before time 3 seconds), which have lower angular 
displacement, i.e. more pre-sliding regime portion. 
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Figure 4. Measured and estimated torques for different models. Dotted lines represent the measured torques, and 
solid lines are the estimated torques.
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Figure 5. Error of the estimated torques 
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Figure 6. Velocity signal in the validation set 

On the other hand, the results of the two recent 
models, LuGre and GMS, show much better 
performance. They give significant improvements, 
especially in the low velocity region, for which the 
classical models could not account well.  

The most recent friction model, GMS, gives the 
best results in this experiment. In particular, strong 
improvement is achieved in the low velocity region. 
The ability to estimate the friction behavior in pre-

sliding regime is shown as the superiority of the 
GMS model, while it does not lose its ability to 
estimate the friction in the gross sliding regime. 
These results are summarized in Table 1. 

As a comparison, another identification utilizing 
GMS model with higher number of Maxwell-Slip 
elements was conducted. In this identification, 10 
Maxwell-Slip elements were used, instead of 4. 
Although this gives a slightly better result, the 
improvement is not significant as shown in the last 
row of Table 1. Increasing the Maxwell-Slip by 6 
elements means adding twice times six (=12) 
parameters in the optimization process, which is a 
high price for the slight improvement. 
The error of the corresponding models and the 
velocity input signal are shown in Figure 5 and 
Figure 6 respectively. 

Table 1. Performances of identification result for 
high frequencies experiment 

 High velocity 
MSE (max. err.) 

Low velocity 
MSE (max. err.) 

Coulomb 4.00% (0.6757) 17.92% (1.2993) 
Stribeck 0.55% (0.2762) 9.59% (1.2604) 
LuGre 0.41% (0.2440) 4.30% (0.6466) 
GMS4 0.40% (0.2350) 1.39% (0.5711) 
GMS10 0.38% (0.2300) 1.19% (0.5177) 

 

6. FRICTION COMPENSATION SCHEME 

In this section, position control incorporating 
friction compensation using the aforementioned 
models in the feedforward will be described. For 
this purpose, the inertial force and the friction 
force, as modeled in the previous section, are 



included in the feedforward loop. The control 
scheme is depicted in Figure 7.  

The feedback loop, which is required to track set-
point changes and to suppress unmeasured 
disturbances, is chosen to be a PID controller with 
gains Kp = 200 Nm/rad, Ki = 0 Nm/rad.s, and Kd = 
0.15 Nm.s/rad. In order to obtain a consistent 
comparison, these gains were optimized for one of 
the control schemes, namely that employing LuGre 
compensation, and used with the same values for all 
the other models. As a numerical quantification of 
the validation criterion, the peak-to-peak tracking 
error will be used for different reference input 
signals. 

 

Figure 7. The feedforward/feedback control scheme 
for friction compensation 

 
7. COMPENSATION RESULTS 

Two different reference signals were employed to 
validate the friction compensation. The first 
reference position signal is a filtered random signal 
with a very small stroke in order to emphasize the 
pre-sliding regime of the friction torque. The 
reference signal was generated using a random 
signal generator, which is passed through a low 
pass, 4th order digital Butterworth filter with 1 Hz 
cutoff frequency. The tracking error of each friction 
compensation model can be seen in Figure 8. (All 
these results were obtained with the same PID 
controller parameters). The numerical RMS values 
are given in Table 2. 

Friction compensation based on the Coloumb 
model yields large errors, and is almost identical to 
the scheme that has no feedforward compensation. 
Since the reference signal has a very small stroke 
and it is emphasizing the presliding regime, the 
Coulomb model is merely playing on its threshold 
region. Thus, the Coulomb model will act only as a 
gain to the reference signal. The GMS model 
compensation, in contrast, gives significant 
improvement in comparison with the other models. 
It shows superiority at the reversal points compared 
to the LuGre model. The jumps in the tracking error 
of the LuGre model, which correspond to the 
sticking problem, are significantly reduced in the 
GMS compensation model. 

Table 2. Performances of friction compensation for 
a low stroke random input 

Compensation RMS (rad x1000) 
No Feedforward 5.6 

Coulomb 5.3 
LuGre 1.6 
GMS 0.6 
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Figure 8. The tracking errors for low stroke filtered 
random reference input. The top-left figure 
shows the tracking error for a system with no 
feedforward friction compensation. In the top-
right figure, the Coulomb friction was used as a 
feedforward friction compensation, while the 
bottom figures show the friction compensation 
results using the LuGre and the GMS model. 
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Figure 9. The tracking errors for high stroke filtered 
random reference input. The top-left figure 
shows the tracking error for a system with no 
feedforward friction compensation. In the top- 
right figure, the Coulomb friction was used as a 
feedforward friction compensation, while the 
bottom figures show the friction compensation 
results using the LuGre and the GMS model. 

The second reference signal used in this experiment 
is a filtered random signal similar to the signal in 
the previous experiment, except that this signal has 
larger amplitude. The maximum stroke of this 



random signal was set to π rad (or half of the 
shaft’s rotation). In this case, the pre-sliding friction 
is not expected to dominate the overall behavior. 

The tracking errors for each compensation scheme 
are depicted in Figure 9. For this desired position 
signal, the GMS model again gives the best 
performance. Nevertheless, according to the 
performance values in Table 3, it does not give a 
significant improvement compared to the LuGre 
model, even though the spikes in the tracking error, 
which are indicated by the arrows in the figure, are 
obviously reduced. These results are 
understandable, since the system was excited with a 
high stroke, i.e. more in sliding regime than in pre-
sliding regime. In this case, the zero crossings of 
the velocity, where the pre-sliding regime friction 
arises, will occur only over a very short portion 
during the whole motion. 

Table 3. Performances of friction compensation for 
a high stroke random input 

Compensation RMS (rad x1000) 
No Feedforward 10.5 

Coulomb 5.7 
LuGre 4.7 
GMS 4.6 

 

8. CONCLUSION 

The following conclusions can be drawn from this 
investigation: 
• Friction identification using a single experiment 

is possible to conduct, even for the more 
complex and ‘more’ nonlinear models. Friction 
identification utilizing the most recent GMS 
model, which incorporates two regimes of 
friction, was also possible to conduct using a 
single experiment. However, selection of the 
excitation signal plays an important role for 
identification using single experiment. 

• For motions with high velocities, the classical 
models such as Coulomb friction and the 
Stribeck friction model give satisfactory results 
comparable to the advanced models. However, 
at low velocities, which emphasize the pre-
sliding regime, the classical models fail to give 
a satisfactory estimation of the overall friction. 
For a good estimation in pre-sliding, models 
that incorporate hysteresis behavior are 
necessary. 

• The ability to estimate the friction behavior in 
pre-sliding regime is the superiority of GMS 
model, while it does not lose its ability to 
estimate the friction in sliding regime. 
Therefore the GMS model can capture friction 
behavior for any working range of displacement 
and velocity. 

• The nonlinear effect of friction in a high load 
torque DC motor is successfully compensated 
for in a feedforward based control experiment. 
In all of the validation cases, the GMS model 
yields the best results. This can be understood 
since this (most recent model) accommodates 

the hysteresis behavior with non-local memory 
for the presliding regime friction, while 
modeling the gross sliding also. 
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