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Abstract: In manufacturing process, the quality of final products is significantly affected by 
both product design and process variables. However, historically tolerance research 
primarily focused on allocating tolerances based on product design characteristics of each 
component. This work proposes to expand the current tolerancing practices, and presents a 
new optimization method of tolerancing mechanical systems using interval computation for 
the prediction of system response. The proposed methodology is based on the development 
and integration of three concepts in process optimization: mechanical tolerancing, response 
surface methodology, and interval computation method. An industry case study is used to 
illustrate the proposed approach. Copyright © 2005IFAC 
 
Keywords: mechanical tolerancing, response surface methodology, interval computation 
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1. INTRODUCTION 

 
Manufacturing operations are inherently imperfect in 
fabricating parts and assembly-products. Product 
imperfections were first described in the concept of 
part interchangeability and implemented in early mass 
production, which further led to the development of 
product tolerancing. Tolerancing is one primary 
means to guarantee part interchangeability. There is a 
significant body of literature related to tolerancing 
methods and its applications. Summaries of the state-
of-the-art, the most recent developments, and the 
future trends in tolerancing research can be found in 
(Zhang 1997) as well as in a number of survey papers 
such as (Ngoi and Ong 1998, Voelcker 1998). 
Traditionally, tolerance analysis and synthesis in both 
stages have been studied in the context of product 
variables, i.e., they focused on part interchangeability. 
We feel that there is a tremendous need to further 
expands it to the interchangeability of manufacturing 
processes (Yu Ding et al.). This is becoming 
increasingly apparent with growing requirements 

related to manufacturer best practices, suppliers 
selection and benchmarking (where each supplier 
may use different process to manufacture the same 
product) or outsourcing. Tolerancing has the potential 
of being an important tool in such developments. We 
propose to extend the scope of tolerancing to 
explicitly include process variables in manufacturing 
processes.  
It is therefore the purpose of this study to provide a 
design method for using Mechanical Tolerances 
(MT), Response Surface Methodology (RSM) and 
Interval Computation (IC) in process optimization. 
This method consist of combined the three concepts 
to obtain a powerful tool will be used especially to 
minimize the variability of the manufacturing 
process. This approach introduces a new concept for 
process optimization called Interval Response 
Surface.  For a given response, the target until now, a 
set of parameters obtained by functional tolerances 
for various factors will be accepted within tolerable 
limits. This method will allow a new way of process 
optimization approach introducing non-targeted 



 

responses. The response surface obtained this way 
will be able to include a part of the non-
corresponding products having failed to fulfill the 
standard quality which was until now targeted on a 
certain value. The multiresponse optimization will 
undoubtedly be a much more significant application. 
In this case the products are conditioned to fulfill 
several quality standards simultaneously. Here the 
method will facilitate this task by "tolerated" but 
always functional responses. 
 

2. RESPONSE SURFACE METHODOLOGY 
(RSM) 

 
Response Surface Methodology (RSM) consists of a 
group of empirical techniques devoted to the 
evaluation of relations existing between a cluster of 
controlled experimental factors and the measured 
responses, according to one or more selected criteria 
(Box and Wilson 1951, Cornell 1990, Montgomery 
2001). RSM provides an approximate relationship 
between a true response y and p design variables, 
which is based on the observed data from the process 
or system. The response is generally obtained from 
real experiments or computer simulations, and the 
true response y is the expected response. Thus, 
computer simulations are performed in this paper. We 
suppose that the true response y, can be written as 
follows: 
 
                            y =F(x1,x2,...,xp)                           (1) 

 
where the variables x1, x2, … xp are expressed in 
natural units of measurement, called “natural 
variables”.   
Once the variables having the greatest influence on 
the responses were identified, a special design was 
developed to optimize the levels of these variables. 
This design is a Box-Wilson Central Composite 
Design, commonly called ‘Central Composite Design 
(CCD)’, which contains an imbedded factorial or 
fractional factorial design having center points and 
being augmented by a group of ‘star points’ that 
allow estimation of curvature (Figure 2). If the 
distance from the center of the design space to a 
factorial point is ±1 unit for each factor then the 
distance from the center of the design space to a star 
point is ± δ with |δ| > 1. The CCD is the most popular 
class of designs used to fit a second-order model. In 
this case the model is defined as follows: 
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Fig. 2.  Central composite design for three factors. 
 

If the phenomenon is strongly nonlinear (our case)  
the CCD is a very efficient design for fitting the 
second-order model. 
 

3. INTERVAL COMPUTATION METHOD 
 
3.1 Introduction. 
 
Interval computation was introduced to compute the 
solution in an guaranteed way. Actually scientific 
calculation made on computer doesn't work on real 
values but on truncated floats. The solution provided 
by interval analysis is to represent any real value by 
an interval containing it - see (Moore 1966) or 
(Alefeld and al 1983) for an introduction. 
The arithmetic laws for interval calculation (Moore, 
1979 and Neumaier, 1990) give a powerful tool to 
evaluate analytic function. Given two intervals [x1] 
[x2] arithmetic operation is defined by : 

 
[x1] + [x2] = [a,b] + [c,d] = [a+c, b+d] 
[x1] - [x2]  = [a,b] + (- [c,d]) = [a-d, b-c] 
[x1]*[x2] = [min{ac,ad,bc,bd},max{ac,ad,bc,bd}]            (3) 
1/[x1]  = [ 1/b , 1/a ], 0 ∉ [a, b] 
 

These operations are an interval extension of real 
operations but not all the propriety can be transposed. 
For example x-x is considered as x-y with x and y 
independent variables. And if x is in [-1,1] the 
expression will take [-2,2] as result. This 
phenomenon is called “dependency problem”. The 
interval result of some expression grows with occurs 
of variables, however this is not true for all cases, e.g.  
x+x. Even if this problem was a serious issue, interval 
analysis may be used in many problems such as: 
 
 Global optimisation (Hansen 1992) 
 Determining roots of fonction (Kearfott 1997) 
 Differential computation (Hammer et al. 1995) 
 Robotics (Jaulin and al 2001) 
 Bounded error estimation (Braems 2001) 
 
Recent developments take into account discrete 
constraint propagation benefits (Cleary 1987 and 
Davis 1987). The interval constraints propagation 
provides new tools to suppress the dependency 
problem and new ways of considering problems. 
 
A Constraint Satisfaction Problem CSP is defined by: 

 
a set V of n variables x1,... ,xn of R 
a set D of n subset [x1],... ,[xn] of R, called domains        (4) 
a set C of m constraints relating variables c1,... ,cm  
 
On this CSP we can reduce domains with constraints 
propagation. The aim of constraints propagation is to 
give the smallest box for the domains including all 
the solutions close to the constraints. The solutions of 
this CSP are defined by the following set: 
 
            S={x in [x],c1(x),c2(x),... cm(x)}                (5) 
 
An example of constraints propagation is given in the 
next section but many free solvers are available to 
characterize the solution set of a CSP - see 



 

(6) 

(Baguenard and al, 2004), (Dao and al, 2004) and 
(Granvilliers 2002). 
 
3.2 Constraint propagation 
 
Let a CSP be defined by the following constraint: 
 

c1: x1+x2 = x3,         
x1 in [1,3], x2  in [0,2], x3  in [0,2]. 
 

The constraint is a relationship among variables. If 
variables are included in intervals, deductions can  be 
made. For certain couples of points (x1,x2) we cannot 
find in the other interval [x3] a value to satisfy the 
constraint. These values are called “not consistent”. 
There is no x3 value for the couples (x1,x2) = (3,2) and 
no (x1,x2) value for x3 = 0, these values are not 
consistent values for this CSP. 
The constraints propagation technique suppresses 
inconsistent values and reduces interval domains. In 
our CSP, domains obtained after constraint 
propagation are: 
       [x1]*[x2]*[x3]=[1,2]*[0,1]*[1,2]          (7) 

 
The CSP implementation is defined by: 
 

[x3]:=[x3] ∩ ([x1]+[x2]), 
[x1]:=[x1] ∩ ([x3]-[x2]),            (8) 
[x2]:=[x2] ∩ ([x3]-[x1]). 
 

The constraint propagation operator for primitive 
constraints may also be defined as: 
 

c2: x1*x2 = x3, 
c3: sin(x1) = x2,             (9) 
c4: exp(x1) = x2... 
 

All analytic expressions are a composition of + - * / 
operators or functions such as sin, cos, exp,... 
Therefore all constraints of the CSP are made of 
primitives constraints. Constraints propagation uses 
this primitive's constraints to reduce variable's 
interval domains.  
Constraints propagation is not the only method, which 
contracts domains. An operator, called “contractor”, 
may be defined for all techniques, which reduce 
domains (Jaulin and al 2001). 
 
3.3 Estimation problem 
 
To illustrate the estimation problem, we can consider 
the function: 
 

f(x)=a1.exp(a2.x).           (10) 
 

In order to estimate a1 and a2 values, which are in the 
set, we consider: 
 

S1={a,xi in [xi],f(xi, a) in [yi]}.          (11) 
 
In figure 3 gray boxes represent the interval’s 
domains for xi and yi. A solution included in the set S 
is given by the dark curve. This curve corresponds to 
a couple of points (a1,a2) which represents a solution 
for our estimation problem. The dotted line is a non-
solution. In this case [f(x2, a)] is not included in  [y2]. 

In our problem, we need to obtain an interval value 
for each ai, which will enable us to choose our value. 
 

 
Figure 3. Parameter estimation for an exponential 
function. 

 
Figure 4. Example of estimation with a non-robust 
solution. 
You can also try to find a more specific set where 
constraints are satisfied for all the values of [xi] 
(Ratchan 2000). The set of solution is: 
 

S2={a, ∀   x  in [x],f(x) in [y]}.               (12) 
 
A non-robust value is drawn in figure 4. In the circle  
(Fig. 3) there is a certain number of values which are 
not included in [yi]. This set of values S2 are included 
in S1. In our application we are more interested in this 
particular type of set because, having the interval 
solution, we can choose a value for xi.  
 
3.4 Proposed algorithm 
 
At first a local method is applied, providing a local 
solution for ai. It gives us an information about the 
initial domains of [ai]. With this information and 
interval domains for xi and yi, we may write the CSP 
file. The next step reduces intervals' domains in a 
forward-backward propagation on all constraints. 
This step is called CS([a],[x],[y]) (Figure 5). 
 

 
Figure 5. The proposed algorithm. 
 

Secondly we bisect one of ai intervals domain. We 
made an interval assessment of f(a,x) for each part of 
the domain and selected one of them. The used 
criterion (Figure 6.) is a function which compares two 
boxes, e.g. [f([a]1] and [y]i. The result is the largest 
distance separating the two boxes. If we apply the 
criterion on [a]i evaluation, we obtain two easily 
comparable distance values. 



 

Figure 6. Criterion to select ai box. 
 
If the evaluation [f([a]1)] is in [yi]  for all i, the 
criterion is negative. We have found a box, which is a 
solution for [ai]. 
Of course the algorithm chooses one box [a]i and 
may have lost solutions, but the criterion depends on 
initialization. Some developments can be made to 
reduce this solution's loss. 
This first algorithm was made to show interval 
methods possibility for this problem and further 
implementations can be made. For example some 
variables occur more than once. The dependency 
problem can cause overestimation in interval 
evaluation, and the contraction method doesn't give 
the smallest box. We can use box contraction to 
enforce contraction (Benhamou and al 1994). 
Progression in contraction can also be done with 
specific contractors such as the gauss elimination 
method. The algorithm RSNP (Figure 5) is a branch 
and bound algorithm, which does not explore all the 
parts of the searching domain. In fact if the entire 
searching domain is explored, the branch and bound 
of the algorithm complexity is exponential. In this 
case the optimal solution will certainly be found, 
however not in polynomial terms. The present 
approach is different: its goal is to find in a short 
period of time an interval solution, which verifies all 
the constraints of the problem. The values of the 
criterion permit to choose a part of the searching 
domain where the solution has a much higher 
probability to occur. In some cases the solution can be 
lost. Under such circumstances the algorithm will 
converge to an estimation of the solution. In general 
this estimation is not sufficient. To resolve this 
problem, a research on all the rejected boxes can be 
made. In the present case the RSNP converges to a 
solution without having searched in the rejected 
boxes. 
 

4. MECHANICAL TOLERANCING 
 
The inherent imperfections of manufacturing process 
cause a degradation of product characteristics, and 
therefore of product quality (Dantan et al. 2003). 
“Tolerance” is a method used to describe variability 
in a product or production process. It defines the 
acceptable ranges in the actual performance of a 
system or its components, across one or more 
parameters of interest, under the conditions 
considered during design, for which the system or 
components are fit for purpose, i.e., meet the 
specifications and/or customer expectations. 
Tolerances historically provide the means for 
communication between product and process 

designers (Milberg 2002). Higher precision would 
mean lower tolerance and better machines are needed 
to manufacture the parts and thus, this will increase 
the cost to manufacture the parts. Tolerance is a key 
factor in determining the cost of a part.  As mentioned 
earlier lower tolerance will results in a higher cost of 
producing the parts. The relationship between 
tolerance and manufacturing cost is shown in the 
figure 7. 
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Figure 7. Manufacturing cost versus mechanical 
tolerance.  
 

The manufacturing cost is divided into machining and 
scraps cost (Figure 7). 
- The machining cost is the cost of first producing 
the part. 
- The scrap cost is the cost encountered due to 
rejecting some parts that fall outside the specified 
tolerance range. 
Generally, product or process are considered in 
conformity when it is in one acceptation interval 
(tolerance) ( Sergent et al. 2003). Tolerance analysis 
views component-related tolerances as a range of 
values in terms of variation from a nominal value. 
Tolerance analysis takes a given set of component 
tolerances, usually based on designer experience or 
standards, and calculates the resultant variation in the 
assembly. Through iteration, component tolerances 
are tightened to meet assembly tolerances, 
establishing both the product and process design 
requirements. In contrast, tolerance allocation looks at 
a range of component designs around a functional or 
assembly description to absorb the variability. 
Tolerance allocation is used to maximize quality, 
minimize production cost, or both. The result can be 
looser component tolerances and better matching of 
product and process (Trabelsi et al. 2000, Gerth 
1997).  
In order to minimize the scraps cost, we propose a 
new method, which increases the acceptation interval 
of the assembly parts in manufacturing process of 
mechanical pieces.  
 

5. PROPOSED APPROACH 
 
This work aims at defining a new method of 
optimization that will use three concepts: 
 
1. Response Surface Methodology 
2. Interval Computation Method  
3. Mechanical Tolerancing 
 
Actually, we will tolerate every level of parameters 

min
maxiX with specific bilateral tolerances i∆± , which 

will later allow the usage of the proposed Interval 



 

Computation algorithm (Figure 4) in order to obtain 
what one may call "Interval Response Surface" (IRS).  
The obtained equation of the IRS will allow us to 
choose several sets of "parameter games" so as to 
make the system more flexible. It is very important to 
mention the fact that for all the sets of "parameter 
games" the response to be optimized will always 
remain "admissible". That means that in an 
acceptance interval of the response established by 
experts or by engineers a priori while respecting 
specifications, the response will no longer represent a 
single value "target", but an interval. Specifications 
often take the shape of a target value(the nominal 
value) m with the bilateral tolerance ∆i . It is an error 
to think that such a specification means that all values 
included between m - ∆i and m + ∆i  will also have 
the same low quality. Therefore the “engineering of 
the target” doesn't eliminate the need of tolerances. 
The existence of tolerances will also confer certain 
flexibility to the manufacturing process and therefore 
will increase the chances of products’ acceptance 
within the bearable limits so as to be functional. This 
new method will bring flexibility in adjusting 
parameters to find the optimum of a manufacturing 
process specifically for multiresponse optimization 
where the probability to “play” on the sets of 
parameters to find an acceptable optimum is not as 
high.  
 

6. APPLICATION 
 
In order to illustrate the proposed approach we 
present the example (Lepadatu et al. 2004) of an 
extrusion process optimization problem, which is 
currently applied in mechanical manufacturing 
industry. Recently, the extrusion process (Figure 8) 
has acquired a fundamental role in metal forming and 
many researches proposed different design techniques 
(Gierzynska-Dolna et all 2003, Arif. and all 2003) for 
increasing the performance and the service life tool.      
 
 
 
 
 
 
 
 
          Figure 8. Metal extrusion process. 
 
Generally, the die lifetime is determined by the stress 
state of die in working conditions and by the 
processed die material proprieties. The estimation of 
tool life (fatigue life) in extrusion operation is 
important for scheduling tool changing times, for 
adaptive process control and tool cost evaluation. The 
cost of forming tools usually covers a substantial 
amount of the forming parts’ total manufacturing cost  
(Yi-Che Lee and al. 2000). More details concerning 
this application may be found in (Lepadatu et al. 
2004). This example used a Central Composite 
Design (CCD) with 3 variables, that is, X1 (Angle of 
the die), X2 (Friction ), X3 (Temperature). (Table 1). 
This design provides five levels for each design 

variable (±δ , ±1, and 0 - Tableau 1). Each level for 
each corresponding parameter is written in interval 
form in term of real values (Table 1). It is important 
to mention that the two interval limits are bilateral 
mechanical tolerances (± ∆i) for each parameter. The 
two responses for this work are Y1 = Maximum 
deformation and Y2 = Lifetime of die (Table 2). 
 
Table 1. Coding of the parameters – interval form. 

 
Parameter                            Levels  
 
          -δ ± ∆i          -1± ∆i          0± ∆i           1± ∆i             δ± ∆i 
  
X1   [0,045; 0,055][0,063 ; 0,077] [0,09 ; 0,11][ 0,117 ; 0,143][0,135 ;0,165] 
X2   [  18   ;      22 ][  20,7; 25,3   ][24,8; 30,2 ][  28,8; 35,2    ][  31,5;38,5   ] 
X3   [  450 ;    550 ][    523; 640   ][  630; 770 ][  737 ;     901  ][ 810  ;  990 ] 
 
Table 2. Interval Design Matrix of CCD. 

Runs X1 X2 X3 Y1 Y2 

    1 [0,063;0,077]  [ 20,7; 25,3] [523; 640] [1,13 ;1,39] [4781 ; 8069] 

2 [0,063;0,077]  [ 20,7; 25,3] [737; 901] [1,21; 1,48] [33370,47181] 

3 [0,063;0,077]  [ 28,8; 35,2] [523; 640] [1,38 ;1,69] [7485,11784] 

4 [0,063;0,077] [ 28,8; 35,2] [737 ; 901] [1,45 ;1,78] [34936,50745] 

5 [0,117;0,143]  [ 20,7; 25,3] [523; 640] [1,62 ;1,98] [8874,14303] 

6 [0,117;0,143]  [ 20,7; 25,3] [737; 901] [1,64 ;2,01] [30834,40048] 

7 [0,117;0,143] [ 28,8; 35,2] [523; 640] [1,75 ;2,13] [8870,15486] 

8 [0,117;0,143] [ 28,8; 35,2] [737; 901] [1,74 ;2,12] [30870,40098] 

9 [0,045;0,055]  [ 20,7; 25,3] [630; 770] [1,15; 1,40] [13899,22859] 

10 [0,135;0,165]  [ 20,7; 25,3] [630; 770] [1,73 ;2,11] [12513,18786] 

11 [0,09 ; 0,11] [24,8; 30,2 ] [630; 770] [1,52 ;1,86] [15828,22150] 

12 [0,09 ; 0,11] [24,8; 30,2 ] [630; 770] [1,70 ;2,08] [17089,23513] 

13 [0,09 ; 0,11] [ 18  ; 22]  [450; 550] [1,50 ;1,83] [8254,16464] 

14 [0,09 ; 0,11] [ 31,5;38,5 ] [810;  990] [1,52 ;1,85] [60295,93465] 

15 [0,09 ; 0,11] [24,8; 30,2 ] [630; 770] [1,49 ;1,82] [17885,24840] 

 
Ordinary Least Squared (OLS) estimation technique 
was first applied to the initial data (Lepadatu et al. 
2004) to develop the Ordinary Response Surface 
Models (ORSM) for each response Yi. The equations 
for generated models (in terms of coded factors) are 
represented in table 3.  
Using the proposed algorithm (Figure 4) for the data 
in table 2, the Interval Response Surface Models 
(IRSM) is developed for each response Yi. The 
equations for generated models (in terms of coded 
factors) are as follows (Table 3).  
 
Table 3. Equations for ORSM and IRSM. 

The 
Model 

Y1 
ORSM 

Y2 
ORSM 

Y1 
IRSM 

Y2 
IRSM 

C 1,657560 20890,26 [1.45; 1.72] [20345; 21992] 

X1 0,206741 -366,02 [0.12; 0.29] [-498; -213] 

X1X1 -0,027817 -2264,27 [-0.07; -0.011] [-2487; -2046] 

X2 0,081178 548,51 [0.05; 0.11] [405; 689] 

X2X2 0,040066 -986,39 [0.01; 0.12] [-1123; -902] 

X3 0,015740 14912,80 [0.005; 0.11] [14030; 15067] 

X3X3 -0,000416 6405,12 [-0.001,-0.0001] [6304; 6699] 

X1X2 -0,036875 -588,68 [-0.012 ;-0.01] [-712; -497] 

X1X3 -0,019875 -1955,57 [-0.09; -0.001] [-2995; -1067] 

X2X3 -0,005125 -152,52 [0.009 ;-0.001] [-252; -51] 
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For example the equation 12 (in interval form) of the 
Interval Response Surface for the die lifetime is:  
 
Y2 = [20345; 21992] + [-498; -213] X1 + [-2487; -2046] X1 
X1 + [405; 689] X2 + [-1123; -902] X2 X2 + [14030; 15067] 
X3 + [6304; 6699] X3 X3 + [-712; -497] X1 X2 + [-2995; -
1067] X1 X3  + [-252; -51] X2 X3             (12) 
 
Where: 

 Yi = [Yimin, Yimax] and    Xi =  [Ximin, Ximax] 
 
These equations (Table 3) allow the obtaining of a 
Tolerancing Response Surface, called Interval 
Response Surface, and represents a new manner for 
making many products accepted in the manufacturing 
process optimization.   
 

7. CONCLUSIONS 
 

This paper has described a manufacturing process 
optimization method that combined the Response 
Surface Methodology, Interval Computation Method 
and Mechanical Tolerancing. In this work we 
proposed a new method to obtain a new Response 
Surface Methodology called Interval Response 
Surface used in the process optimization. Using this 
method more final pieces are produced and accepted 
in the manufacturing process optimization. 
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