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Abstract: This paper presents recent results and experiences of using real-time image 
analysis in the control of copper flotation at the Pyhäsalmi Mine Oy (Finland).  First we 
introduce our measurement set-up and the image variables it produces. After that the 
image variables are correlated against process variables using Partial Least Squares and 
clustering. The results show that some of the process disturbances are seen 30-40 minutes 
earlier in specific image variables when compared to the on-stream X-ray analyses. 
Furthermore, the image variables help in deducing what has caused the process 
disturbance and what should be the corrective action. Hence the most important image 
variables were added into the rule-based controller of the cleaner bank. Comparison 
results then show that this addition of information helps us to run the process near its 
optimum in a reliable fashion.  Copyright © 2005 IFAC 
 
Keywords: process control, product quality, image analysis, classification, closed loop 
control, statistical analysis. 

 
 
 
 

 
1. INTRODUCTION 

 
The possibility of using image analysis in the control 
of mineral flotation has aroused a lot of interest in 
the mineral engineering community (see (Cipriano et 
al. 1998), (Moolman et al. 1995) and (Symonds et al. 
1995) to name a few). Most of the research so far has 
merely concentrated to either derive new image 
processing algorithms to calculate certain features 
from the froth images or to analyse the correlations 
between some image variables and process variables. 
However, the ultimate goal should be to use the 
additional information from the image variables to 
improve the control of the flotation process. 
 
In order to reach this goal a European Union funded 
research project ChaCo (The Characterisation of 
Flotation Froth Structure and Colour by Machine 
Vision) was launched in 1997. The project ended in 
April 2000, and as a result of the project a real-time 

image analyser was implemented at the Pyhäsalmi 
mine (Finland) in the rougher bank of the zinc 
flotation circuit. The data analysis performed during 
the project showed that some of the image variables 
could be used to detect process anomalies earlier than 
with the X-ray on-stream analysis (some of the 
results are reported in (Hätönen 1999) and (Hasu 
1999)). Hence the most important image variables 
were added to the control logic of the rougher bank. 
Experimental validation showed that the new image 
based controller increases recovery of the zinc 
circuit, resulting in approximately 300 k€/year profit 
for the mine (Miettunen et al. 2001). 
 
The purpose of this paper is to investigate if a similar 
approach can be adopted to the copper flotation 
circuit of the Pyhäsalmi mine.  The structure of the 
paper is the following: In the next section a general 
description of the measurement set-up is given. After 
that a new image analysis algorithm for calculating 



     

the mineral load of the copper froth is given. The 
next step is to analyse the correlations found between 
the image and process variables using Partial Least 
Squares (PLS) and clustering. In the following 
section the new control logic that also uses the image 
variables is presented followed by a section on 
experimental control performance evaluation. The 
final section includes conclusions and suggestions 
for future research work. 
 

2. IMAGE ANALYSIS SETUP 
 
The basic structure of the measurement set-up 
implemented at the Pyhäsalmi concentrator is shown 
in Fig. 1. It consists of a measuring hood attached on 
top of the zinc-flotation cell and a computer located 
next to the hood (Kaartinen 2000). In the hood there 
are a RGB-colour camera and a spectrophotometer. 
The spectrophotometer is connected to the computer 
next to the flotation cell whereas the RGB-camera is 
connected to a control room computer, which 
performs the image processing. The two measuring 
compartments are separated with a wall inside the 
hood and they also have their own (continuously 
adjustable) light sources. 
 

 
Fig. 1. The set-up of the on-line flotation froth 

analyser 
 
The camera inside the hood is adjusted so that 
imaging geometry is perpendicular and the 
illuminating 500W incandescent halogen lamp is as 
close to the camera as possible making the 
illumination geometry almost perpendicular (see 
Figs. 2 and 3). This guarantees that each bubble has 
only one bright spot (i.e. a total reflectance point), 
which is a very useful property for segmentation 
algorithms because they can use this bright spot as a 
starting point for the segmentation. 
 

 
Fig. 2. The actual system running in Pyhäsalmi 

concentrator 
 

 
Fig. 3. Top view of the image analyzer 
 
The measurement setup is connected to the 
concentrator’s automation system and can also be 
accessed remotely by using a secured TCP/IP 
connection. The measurements are currently done by 
using the RGB-colour camera. The spectro-
photometer was only used to give additional insight 
to colour measurements. 
 
Each grabbed froth image is saved into an image 
database, which contains a 24-hour froth image 
history. The operators and plant engineers can access 
the database from the automation system. Thus they 
can, for example, check how the froth appearance 
changes after they have made a corrective action in 
the levels of flotation reagents. The database also 
helps the operators to learn how the actual numbers 
given by the image processing algorithms are related 
to the current appearance of the froth. 
 
3. INTRODUCTION OF THE LOAD VARIABLE 

 
During the course of the project each of the authors 
saw thousands of froth images from the copper 
rougher cell. A striking feature of these images 
seemed to be that by visual inspection it was very 



     

easy to detect bubbles that had a thick mineral cover 
from bubbles having a very thin mineral cover 
(usually referred as a wet bubble at the concentrator). 
Furthermore the main indicator of a bubble having a 
very thin mineral load was the fact that it seemed 
much more transparent than a bubble having a high 
load of minerals (see Figs. 4 and 5 for an example of 
an extremely stiff (or dry) and a wet froth). It was 
also fair to expect that the information of the amount 
of transparent bubbles should characterise somehow 
the efficiency of the current flotation control policy. 
However, there seemed to be no evident way of 
transforming this visual sensation to a numerical 
algorithm. 
 

 
Fig.4. Stiff froth 
 

 
Fig.5. Wet froth 
 
Fortunately, by doing experiments with the 
illumination intensity, it was noticed that if a suitable 
level of illumination is used, the transparent bubbles 
have a very distinctive total reflectance point. In this 
case the intensity level of each channel R (red), G 
(green) and B (blue) goes up to the maximum level 
(255) whereas the bubbles having a good load of 
minerals produce “total reflectance points” having 
much smaller intensity values. Thus the numerical 
algorithm for detecting the transparent bubbles was 
implemented by utilising the following three steps: 
 

1. Go through each pixel of the froth image. If 
the value of the pixel is equal to 
(255,255,255) then mark this pixel as wet 
pixel. 

2. By using the labelled image from the 
segmentation algorithm check which 

bubbles have wet pixels. Mark these bubbles 
as wet bubbles. 

3. Calculate the total number of pixels that are 
classified as belonging to wet bubbles. 
Divide this number with the total number of 
pixels in the image and multiply it with 
100%. This number (which takes values 
between 0% and 100%) is the outcome of 
the algorithm, which we call as the load 
variable. 

 
In other words the outcome of the algorithm is the 
area of the froth image covered with wet bubbles in 
percentages (i.e. the higher is the value of the load 
variable, there is an increased number of bubbles 
having a low mineral load on them). 
 
 

3. PLS AND CLUSTER ANALYSIS OF THE 
DATA 

. 
After installing the camera-setup into the copper 
circuit, a data collection campaign lasting several 
months was carried out. The following image 
variables were recorded: speed of the froth, bubble 
collapse rate, bubble size distribution, froth load, 
colour of the froth (RGB). 
 
The data analysis on this data was concentrated on 
finding a connection between image variables and X-
ray analysis of the zinc concentration in the final 
copper product. This was due to the fact that plant 
had experienced problems in minimising the zinc 
concentration in the final copper product. Note that 
after the copper flotation the next phase is zinc 
flotation, and therefore any zinc in the copper 
product will decrease the overall zinc recovery. 
 
The initial data analysis was carried out by using 
PLS. This analysis consisted of the following steps: 
 

1. Divide the data into one week teaching data 
and one week validation data sets. 

2. Remove any outliers in the image or 
concentration data by using median 
filtering.  

3. Scale both image data and concentration 
data to zero mean and unity variance. 

4. Fit the image data into the concentration 
data for a range of time lags using a PLS 
model. The best model in terms of squared 
errors is selected to be the final model. This 
model is validated with the validation data. 

 
The PLS model structure was chosen because it is 
known to cope well with collinearity. Quite 
surprisingly, the analysis pointed out that image 
variables indicate changes in the zinc concentration 
in the copper product 30-40 minutes earlier than the 
X-ray analysis. Fig. 6 shows the fit for the teaching 
data, which is reasonable. Fig. 7, on the other hand, 
shows the fit for the validation data, which shows 
noticeable uncertainty in the prediction. Therefore 
the predicted concentration from the PLS analysis 
cannot be used directly in the controller that 



     

minimises the zinc (Zn) concentration in the final 
copper product. 
 
To overcome the uncertainty in the PLS prediction, 
the next step was to use cluster analysis. As a starting 
point the “loadings” of the PLS model were 
analysed, and they pointed that froth load and bubble 
collapse rate are the most important variables in the 
PLS model. After that the zinc concentration was 
divided into three classes, namely “bad”, “neutral” 
and “good”, where “good” is zinc concentration less 
than 1.75%, “neutral” contains the range 1.75% - 
2.5% and “bad” concentrations over 2.5%. These 
concentrations were defined by the plant engineers. 
After that, taking into account the 30-40 minute 
delay, the image variables were classified into the 
same classes as the corresponding lagged zinc 
concentration. The final step was to plot the image 
data on the bubble collapse rate – froth load plane, 
and use different colours to represent if a particular 
point belongs to the “bad” or “good” class. Fig. 8 
shows graphically the end result of the clustering. 
From this figure it is clear the “bad” and the “good” 
froth classes are separated reasonably well in the 
bubble collapse rate – froth load plane. This property 
is used in the following section to design a new 
controller that uses real-information from the image 
variables to minimise zinc concentration in the 
copper product. 
 

 
Fig. 6. The predicted and measured Zn concentration 

with the teaching data 
 

 
Fig. 7. The predicted and measured Zn concentration 

with the validation data 
 
 

 

 
Fig. 8. Cluster analysis of data 
 
 

4. IMPLEMENTATION OF THE 
CONTROLLER 

 
As is shown in Fig. 8, the “bad” and the “good” froth 
classes are separated reasonably well in the bubble 
collapse rate – froth load plane. This motivates a 
control philosophy where the process is prevented 
from entering the square shown in the bottom left-
hand corner. Consequently the rule 
 
“IF load  > 62 AND bubble collapse rate < 4.5  
THEN make a corrective action to reduce Zn%“ 
 
should minimise the amount of zinc that is wasted 
into the final copper product. 
 
Utilising both step change experiments and operator 
experience it was found out that most effective 
corrective action was to increase the cyanide set-
point for the cleaner bank. 
 
This new rule was added into the current controller 
that tries to minimise zinc concentration in the final 
copper product. The controller is implemented by 
using rule-based controller software that was 
available in the automation system of the plant. 
 
As was pointed out in the previous section, the image 
variables seem to be able to predict changes in the X-
ray analysis 30-40 minutes in advance. Hence by the 
virtue of the new rule, the new controller should be 
able to react 30-40 minutes earlier to disturbances in 
the cleaner bank. The next section shows that 
preliminary experimental comparisons support this 
conjecture. 
 
   

5. CONTROLLER PERFORMANCE 
EVALUATION 

 
In order to compare the results between the previous 
and the new controller, Fig. 9 and Fig. 10 show the 
histograms of zinc concentration in the copper 
product for two one-week data sets. During the first 
data set the old controller was used whereas during 
the second data set the new controller was employed. 
The graphs show clearly how the new rule decreases 



     

the mean zinc concentration, and more importantly, 
decreases also the variation of the zinc concentration. 
 

  
Fig. 9. The histogram of Zn% in the copper 
concentrate with the old controller 
 

 
Fig. 10. The histogram of Zn% in the copper 
concentrate with the new controller 
 
Table 1 shows this same data in numerical form 
together with two additional data sets. 
 
Table 1: Numerical comparison of control 
performance with old and new controller 
 

Dates Mean Std Control 
30.7.-5.8 1.90 0.44 OLD 

5.8-10.8 2.22 0.38 OLD 

1.9-8.9 1.49 0.29 NEW 

8.8-15.9 1.57 0.26 NEW 

 
These numerical results further indicate that the new 
controller is capable of reducing both the mean and 
the variance of the zinc concentration in the copper 
product.  
 
If further comparison work shows that this 
improvement is consistent, considerable financial 
benefits can be expected for the mine. 
 
 
   
 

6. CONCLUSIONS AND FUTURE WORK 
 
As a first step in this paper we have described an 
image-analysis set-up for online-monitoring of the 
Pyhäsalmi copper cleaner circuit. The main feature of 
the set-up is that it allows an easy and flexible 
environment for testing new ideas in both software 
and hardware terms. 
 
 After describing the image-analysis set-up a new 
image analysis algorithm for calculating the mineral 
load of the froth has been presented. The actual 
implementation of the algorithm was very 
straightforward but to spot the fact that this kind of 
algorithm is really needed took a reasonable amount 
of time and experience.  
 
As a next step the image variables were correlated 
against zinc concentration in the copper product by 
using both PLS modelling and cluster analysis. This 
analysis indicated that the disturbances in the zinc 
concentration could be detected 30-40 minutes earlier 
when compared to the X-ray analysis. 
 
The cluster analysis was used to find a suitable rule 
in an expert controller, resulting in a new controller 
that utilises real-time image information. Preliminary 
results indicate that the new controller is capable of 
reducing both the mean and variance of the zinc 
concentration in the copper product. The new version 
has been running for several months and all the 
current results suggest that the behaviour is 
consistent with the presented analysis. Further 
comparisons will be made and if the results are 
similar, considerable financial benefits can be 
expected for the mine. 
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