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Abstract: While in the first paper of this series of two, optimal jacket fluid temper-
ature control profiles have been derived for a family of dispersive tubular chemical
reactors, the performance of these optimal profiles is further assessed in this
second part. First, the performance of the optimal bang-bang control is compared
with that of a more easily implementable constant jacket fluid temperature and
secondly, the transient behaviour is studied, when the steady-state optimal control
law is applied from the reactor start-up. Copyright c©2005 IFAC
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1. INTRODUCTION

As already mentioned in part I of this series
(Logist et al., 2005), the problem of optimal con-
trol of (nonlinear) chemical processes remains an
intriguing and persistent challenge for chemical
process control engineers. The reactor under study
in this series of papers is a classical dispersive
tubular reactor in which an irreversible, exother-
mic, first-order reaction takes place. A surround-
ing heating/cooling jacket is present to control
the reactor as to maximise the conversion and to
minimise the energy cost.

In previous works (Logist et al., 2004; Logist et
al., 2005), the optimal jacket fluid temperature
profile has been derived analytically by applying
Pontryagin’s minimum principle, yielding a bang-
bang control law. Based on physical knowledge a
maximum-minimum (max-min) control has been
adopted and the position for switching from the
maximum to the minimum jacket fluid tempera-

ture has been numerically optimised by means of
a weighted shooting-type procedure. The optimi-
sation has been performed for a family of tubular
reactors, ranging from reactors with a CSTR-like
behaviour to nearly plug flow reactors (PFR).

This second paper first illustrates the improved
performance of the max-min control law over a
more easily implementable constant jacket fluid
temperature control. Secondly, the reactor perfor-
mance under transient conditions is assessed, i.e.,
when the optimised steady-state control is applied
from the start-up of the empty reactor.

However, due to the distributed nature and the in-
herent nonlinearities of the transient reactor sys-
tem, transient simulations require the solution of
a set of two coupled partial differential equations
(PDEs). Additionally, the dispersion parameters,
or equivalently the Peclet numbers, strongly in-
fluence the nature of these equations and thereby
also the numerical procedures to solve them.



In this contribution, it is illustrated how a combi-
nation of numerical methods is required for inves-
tigating the whole reactor type range.

The organisation of the paper is as follows.
Section 2 introduces the dynamic mathematical
model. Section 3 compares the reactor perfor-
mances under the analytically derived optimal
bang-bang control and the more easily imple-
mentable constant jacket fluid temperature con-
trol law. Section 4 highlights the numerical tech-
niques needed for accurate transient simulations,
which are applied in Section 5. In this latter sec-
tion the transient reactor behaviour is discussed.
Finally, Section 6 summarises the main conclu-
sions.

Fig. 1. Tubular reactor with surrounding heat-
ing/cooling jacket.

2. THE DYNAMIC AXIAL DISPERSION
MODEL

Describing the reactor under transient conditions
by a 1D-model with axial mass and heat dis-
persion results in the following system of two
second-order partial differential equations with
respect to the spatial coordinate z and the time t,
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subject to four Danckwerts boundary conditions
(Danckwerts, 1953),
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and two initial conditions reflecting the empty
state at start-up,

T (z, 0) = T0(z) = Tin = 340 K
C(z, 0) = C0(z) = 0 mole/L

where all variables have the same meaning as in
the first paper.

3. ASSESSMENT OF OPTIMALITY

In this section, the steady-state reactor perfor-
mance under two different controls, i.e., the an-
alytically derived optimal bang-bang control, and
a more easily implementable constant jacket fluid
temperature control, is numerically investigated.

Under steady-state conditions the dynamic partial
differential equations (1) and (2) and their respec-
tive boundary conditions reduce to the following
set of ordinary differential equations,
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Once again, dimensionless variables are intro-
duced for numerical convenience (see Part I).

The calculations are performed for tubular reac-
tors ranging from nearly plug flow reactors (Pe =
108) to almost perfectly mixed continuous stirred
tank reactors (Pe = 0.01), using the weighted
shooting-type procedure described in Part I. It
should be noted here, that for these simulations
the same fixed parameter values and the same
terminal cost criterion (Equation (3)), being a
trade-off between conversion and energy consump-
tion, are used as in the previous paper.

J [u] = (1−A)C(L)︸ ︷︷ ︸
J1[u]

+A
(T (L)− Tin)2

K1︸ ︷︷ ︸
J2[u]

(3)

Since a constant jacket fluid temperature is easier
to implement than the max-min step profile (only
one heat exchanger, operating at a constant, in-
termediate temperature Tw is needed instead of
two), the performance of such a constant profile
is compared with that of the optimal one. For 121
equally distributed jacket fluid temperatures Tw

ranging from Tw,min (280 K) to Tw,max (400 K)
the exact inlet conditions are calculated and used
to compute the value of the cost criterion J
(Equation (3)). Figure 2 illustrates the evolution
of the minimal total cost and of the optimal con-
stant jacket fluid temperature as a function of the
Peclet number Pe.

The following conclusions can be deduced from
this figure.

• For high Peclet numbers the optimal jacket
fluid temperature is equal to the plug flow
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Fig. 2. Minimal cost value (- - -) and optimal
constant jacket fluid temperature (—) as a
function of the Peclet number Pe.
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Fig. 3. Minimal cost value as a function of the
trade-off coefficient A for Pe = 1 and Pe =
10.

value of 343 K, while for low Peclet numbers
the optimal jacket fluid temperature slightly
increases to the CSTR value.

• A similar transition in the minimal cost value
as in the first paper is observed here. How-
ever, the decrease in cost is not as sharp
as before. For all Peclet numbers this more
easily implementable constant jacket fluid
temperature control results in a higher cost,
which illustrates the optimality of the ana-
lytically derived control law. However, this
effect is less pronounced for highly dispersive
tubular reactors. In practice, the control en-
gineer will have to decide whether the im-
proved performance of the max-min control
is worth installing a second heat exchanger.

The same effect is also observed in Figure 3,
where the optimal cost values of both controls are
depicted at intermediate Peclet numbers of 1 and
10, for A varying from 0 to 1. Clearly, for all A
values, the analytically derived bang-bang control
has a better, or at least an equal performance as
the constant jacket fluid temperature control.

4. TRANSIENT SIMULATION TECHNIQUES

In this section, some technical details are given
about the employed transient simulation methods.

In literature, an enormous number of numerical
methods for various types of partial differential
equation problems has been published over the
past decades, e.g., finite differences methods, finite
elements methods and collocation methods (see,
e.g., Hundsdorfer and Verwer (2003)).

Recently, a promising new routine, called sequenc-
ing method, belonging to the class of operator
splitting methods, has been published. The ratio-
nale of this method is the separation of the dif-
ferent physical and chemical reactor phenomena
(i.e., dispersion, reaction and convection) (Renou
et al., 2003).

Another novel evolution is the release of a
Matlab-based method of lines toolbox MatMOL,
which provides the user a variety of easily under-
stood methods and examples which can be em-
ployed for the rapid prototyping of new dynamic
simulation codes (Vande Wouwer et al., 2004).

Since the nature of the governing partial differen-
tial equations is heavily affected by the dispersion
parameters, a combination of numerical methods
is required for investigating the whole reactor
range. In this paper, a variant of the sequencing
method is used for reactors with limited disper-
sive behaviour, while methods from the MatMOL
toolbox are exploited for more dispersive reactors.

The method of lines solution of PDEs is based
on two steps: the spatial derivatives are first ap-
proximated by, e.g., finite differences, and then
the system of semi-discrete equations is integrated
in time. The success of this approach is due
to the availability of efficient time integrators
for solving the resulting mixed systems of (ordi-
nary) differential and algebraic equations (DAEs)
(Vande Wouwer et al., 2004).

In the MatMOL toolbox, various discretisation
stencils (uniform/nonuniform, different order and
positioning) are available for approximating the
spatial derivatives in the PDEs and the boundary
conditions. Low-order schemes, e.g., first-order
approximations, which lead to the classic tanks-
in-series reactor model, always yield smooth so-
lutions. However, the resulting profiles are not
always accurate, especially for high Peclet values
steep gradients are smeared due to the presence
of so-called numerical diffusion. The application
of high-order schemes, e.g., fifth-order approxima-
tions, results in more accurate transient profiles
up to much higher Peclet values, but for very high
Peclet numbers, they give rise to nonphysical os-
cillations in front of and/or behind steep gradients
due to so-called numerical dispersion. Observe



Table 1. Optimised results for the max-
min profile.

Pe [-] z∗1 [m] J ∗ [-]

0.01 0.58 4.7783 · 10−3

0.1 0.58 4.6185 · 10−3

0.5 0.58 3.9488 · 10−3

1 0.58 3.2274 · 10−3

2 0.57 2.1795 · 10−3

10 0.54 3.3644 · 10−4

20 0.54 1.2252 · 10−4

100 0.54 1.8565 · 10−5

200 0.54 1.1845 · 10−5

1000 0.54 7.6388 · 10−6

104 0.54 6.7872 · 10−6

105 0.54 6.7638 · 10−6

106 0.54 6.7566 · 10−6

107 0.54 6.7555 · 10−6

108 0.54 6.7555 · 10−6

that both numerical diffusion and dispersion are
computational artefacts and, by consequence, may
not be confused with their physical equivalents.
Increasing the grid density, decreases these unde-
sired effects, but also increases the computational
burden. Hence, an acceptable trade-off between
computation time and accuracy has to be found.

For low and intermediate Peclet values (Pe ≤
104), a five point biased upwind and a five point
centred scheme are selected from the MatMOL
toolbox to approximate the first-order and the
second-order spatial derivatives, respectively, on
a uniform grid with 501 points. The Danckwerts
boundary conditions are taken into account at the
boundary points. The resulting system of DAEs is
then integrated in time with the Matlab c© (The
Mathworks Inc., Natick) routine ode15s.

The sequencing method is based on the separa-
tion of the different phenomena. At each time
step, convection, dispersion and reaction (i.e., the
chemical reaction part itself as also the exchange
through the reactor wall) are applied successively
on the reactor mesh. For weakly dispersive reac-
tors, this method exhibits excellent shock captur-
ing features, while at the same time for highly dis-
persive reactors also accurate simulations are ob-
tained. The only minor drawback in the latter case
is the fact that this method has some problems
to capture the inlet gradient correctly. Again this
effect can be decreased by increasing the number
of grid points. Unfortunately, the computational
expense also increases (Renou et al., 2003).

For very high Peclet values (Pe > 104), an
adapted version of the sequencing method over
a uniform grid with 500 grid points has been
elaborated in Matlab c©.

5. TRANSIENT SIMULATIONS

In this section, the start-up process is simulated
for the reactors with the previously optimised
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Fig. 4. Concentration (top) and temperature (bot-
tom) profiles for Pe = 0.01 under the opti-
mised max-min control (z∗1 = 0.58 m): tran-
sient evolution (- - -), steady-state from the
transient regime (—) and from the weighted
shooting-type technique (—).

bang-bang control. The transient evolution of the
temperature and the concentration profiles are
computed for the same 15 Peclet values as in
the first paper (i.e., 108, 107, 106, 105, 104, 103,
200, 100, 20, 10, 2, 1, 0.5, 0.1 and 0.01). The
optimised switching positions z∗1 and the minimal
cost values J ∗ for the equally weighted terminal
cost criterion are summarised in Table 1. Due to
space limitations the transient results for only four
more or less characteristic Peclet values (i.e., 0.01,
1, 10 and 108) are displayed in Figures 4, 5, 6 and
7. For each Peclet number the concentration (top)
and temperature (bottom) profiles at 0, 1, 2, 3, 4,
5, 7, 9, 11, 15, and 20 s (dashed lines) are shown
together with the steady-state profile (i) found as
a result of the transient regime (i.e., profiles at
the final simulated time of 50 s) and (ii) obtained
with the weighted shooting-type (solid lines).

From Figures 4, 5, 6 and 7 the following conclu-
sions can be drawn about the transient behaviour.

• A clear transition is visible in the four figures.
Figure 4 displays very flat reactor profiles,
close to the perfectly mixed behaviour of a
CSTR. The profiles in Figures 5 and 6 are
still smooth, yet, larger gradients in both the
concentration and the temperature profile
are visible due to the decreasing dispersion
degree. And finally, in Figure 7 extremely
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Fig. 5. Concentration (top) and temperature (bot-
tom) profiles for Pe = 1 under the opti-
mised max-min control (z∗1 = 0.58 m): tran-
sient evolution (- - -), steady-state from the
transient regime (—) and from the weighted
shooting-type technique (—).

sharp fronts are observed, because the fluid
flows as a plug through the reactor.

• Convergence towards the steady-state is al-
ways achieved. This can be explained because
in this study neither of the limit cases (plug
flow reactor and CSTR) exhibits multiple
solutions: a PFR never yields multiple so-
lutions and the criterion for a CSTR with
surrounding cooling jacket and irreversible
first-order reaction ensures for this case a
unique solution (Morbidelli et al., 1987).

• The accuracy of the transient simulations is
satisfactory. The obtained steady-state pro-
file hardly differs from the one found with the
weighted shooting-type technique: the two
solid lines are undistinguishable.

• During the transient phase, no physical or
constructive constraints are violated, i.e., the
concentration and the reactor temperature
always remain positive and the temperature
inside the reactor does not reach unaccept-
ably high levels, which is a very important
conclusion from a practical point of view.

Finally two of the methods mentioned in Part I
of this series of two papers for solving the
steady-state boundary value problem, i.e., the
weighted shooting-type procedure used in Part I
and the (false) transient method, which is de
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Fig. 6. Concentration (top) and temperature (bot-
tom) profiles for Pe = 10 under the opti-
mised max-min control (z∗1 = 0.54 m): tran-
sient evolution (- - -), steady-state from the
transient regime (—) and from the weighted
shooting-type technique (—).

facto implemented in this paper, can be compared
based on their computational efficiency. Although
the resulting steady-state profiles are the same,
the computational burden differs. In Table 2 the
computation times (on a 2.4 GHz PC with 512
Mb RAM) for the steady-state profiles displayed
in Figures 4 to 7 are indicated. As can be seen,
the former method is generally faster (although
the initial guess for the optimisation routine in-
fluences the calculation time). However the latter
technique has the advantage of yielding an all-in-
one (i.e., steady-state and transient) solution.

Table 2. Computation time for steady-
state profiles (a: MatMOL toolbox, b:

sequencing method).

Weighted shooting-type False transient

Pe = 0.01 2.9 s 29.4a s
Pe = 1 15.7 s 35.7a s
Pe = 10 1.9 s 38.6a s
Pe = 108 25.1 s 391.1b s

6. CONCLUSIONS

In the context of optimal control of chemical
reactors, this series of two papers focusses on
the optimal jacket fluid temperature profiles for
exothermic tubular chemical reactors with axial
mass and heat dispersion.
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Fig. 7. Concentration (top) and temperature (bot-
tom) profiles for Pe = 108 under the opti-
mised max-min control (z∗1 = 0.54 m): tran-
sient evolution (- - -), steady-state from the
transient regime (—) and from the weighted
shooting-type technique (—).

In the first paper (Part I, see Logist et al. (2005)),
the optimal steady-state results, which were pre-
viously analytically derived by applying Pontrya-
gin’s minimum principle, are numerically opti-
mised, using a weighted shooting-type procedure
ensuring the Danckwerts boundary conditions are
satisfied. In addition, the influence of the trade-off
coefficient A in the cost criterion is investigated.

In this second paper (Part II), the improved
steady-state performance of the analytically de-
rived bang-bang control over a more easily imple-
mentable constant jacket fluid temperature con-
trol law is illustrated. Obviously, a trade-off has
to be made in practice between the decrease in
performance and the extra cost and complexity
of installing a second heat exchanger to impose
the optimal step profile. Afterwards, the transient
reactor behaviour, i.e., when the optimised control
is applied from the reactor start-up, is investigated
for a whole family of tubular reactors, i.e, from
almost perfectly mixed reactors with a CSTR-
like behaviour (for low Peclet numbers) to nearly
plug flow reactors (for high Peclet numbers).
Since the nature of the governing PDEs (and by
consequence also the required solution method)
strongly depends on the Peclet number, two dif-
ferent numerical schemes are adopted, exploiting
their specific strong points. For low and interme-

diate Peclet numbers a high-order stencil from
the Matlab-based MatMOL toolbox, which imple-
ments a finite differences method of lines (MOL)
approach, is employed, while for high Peclet values
an adapted version of a sequencing method is
implemented. The reactor simulations show that
physical or constructive constraints are never vio-
lated during the transient regime and that conver-
gence towards the optimised steady-state results
is always achieved. Finally, the computational ef-
ficiency of two numerical methods for solving the
steady-state problem, i.e., the weighted shooting-
type procedure employed in Part I and the (false)
transient method used in this paper, is compared.
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