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Abstract: This paper presents a Receding Horizon Control (RHC) strategy to robustly
control linear hybrid systems subject to bounded additive disturbances. First, the open-
loop finite horizon min-max optimal control problem associated with the RHC strategy
is presented, defining a mixed-integer optimization problem. The goal of the min-
max formulation is to minimize the worst-case cost of the performance index, while
guaranteeing performance/safety constraints for all possible disturbance realizations.
Then it will be proved that feasibility at the initial time as well as convexity arguments
and set-invariance assumptions are sufficient conditions to guarantee robust stability
and performance of the closed-loop system. Simulation results for a perturbed hybrid
system will demonstrate the potential of the proposed robust optimal control design.
Copyright c©2005 IFAC

Keywords: hybrid systems, model predictive control control, min-max optimization,
robust control, mixed logical dynamical systems

1. INTRODUCTION

The study of dynamical processes having continu-
ous and discrete variables, denoted as hybrid sys-
tems, has recently seen a rapid development trigged
by the spread of dynamical systems integrated with
logical/discrete decision components and a market
competition pressure to achieve fast and “optimal”
designs. The research field of hybrid systems results
from the interaction between the computer science
and the control engineering communities, motivated
by the strong impact on applications, e.g. in em-
bedded systems, chemical and biotechnological pro-
cesses, aerospace, manufacturing, robotics, automo-
tive applications, etc. [Antsaklis, 2000]. In the in-
dustrial context, the synthesis of control schemes for
hybrid systems is usually approached with heuristic
rules, mainly driven by engineering insight and ex-
perience, with a consequently long design and veri-
fication process. Therefore, the development of new
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tools to design control/supervisory schemes for hybrid
systems and to analyse their stability, safety and per-
formance is of great importance. An hybrid system
is characterized by a set of operating modes, each
one evolving according to some time-driven dynam-
ics. The switching between modes is regulated by
events which may be controlled or uncontrolled. The
control of the switching times and the choice among
several feasible modes, gave rise to a new rich class
of optimal control problems. Several researchers pre-
sented new techniques to obtain solutions for some
subclasses of this new class of optimal control prob-
lems, e.g. [Bemporad and Morari, 1999, Branicky
et al., 1998, Cassandras et al., 2001, Hedlund and
Rantzer, 1999, Kerrigan and Mayne, 2002, Mayne
and Rakovic, 2003]. Some of these techniques ex-
tend classical optimal control principles, while others
apply dynamic programming techniques, as well as
tools from computational geometry and optimization
such as, parametric programming, convex and mixed
integer optimization. However, virtually all techniques
of optimal control of hybrid systems suffer from the



well-known curse of dimensionality, i.e. the computa-
tional complexity to solve such problems increase ex-
ponentially with the dimension of the problem [Blon-
del and Tsitsiklis, 2000]. According to Cassandras
and Gokbayrak [2002], the keys to the successful
development of optimal control methods for hybrid
systems are: a) seeking structural properties that al-
lows the decomposition of such systems into simpler
components, and b) making use of efficient numer-
ical techniques. For instance some authors explored
the possibility of hierarchical decomposition of some
systems into a lower-level component representing
physical processes characterized by time-driven dy-
namics and a higher-level component representing dis-
crete events related to these physical processes. Other
examples include the work on PWA systems [Kerri-
gan and Mayne, 2002], MLD systems [Bemporad and
Morari, 1999], ELC systems [Heemels et al., 2000],
and MMPS systems [de Schutter and van den Boom,
2001]. Recently Heemels et al. [2001] proved the
equivalence between PWA, ELC, MMPS, and MLD
systems, allowing to interchange analysis and synthe-
sis tools among them. The choice of a suitable mod-
elling framework is crucial since it reflects a trade-off
between two conflicting criteria: the modelling power
and the decisive power. The MLD modelling frame-
work will be adopted in this paper since it allows to
model systems described by interdependent physical
laws (with linear dynamics), logic rules (if-then-else
rules) and operating constraints. Another important
characteristic of the MLD model is its optimization-
oriented structure, allowing to “smoothly” extend ex-
isting optimal control methodologies developed for
continuous-valued dynamics to the hybrid setting.
Achieving robust stability and/or performance when
uncertainty is present in the system dynamics is a
crucial subject on any control design. Robust stabil-
ity is a serious concern in industrial Model Predic-
tive Control (MPC) applications and is currently ad-
dressed, for the most part, through the use of exten-
sive closed-loop simulation prior to implementation,
relying on the control engineer to anticipate and test
every important combination of plant dynamics and
active constraints, leading to an expensive and time
consuming task. Most studies on robustness consider
unconstrained systems subject to small perturbations
[Mayne et al., 2000]. However, when hard constraints
on states and controls are present, it is necessary to
ensure, in addition, that disturbances do not cause
transgression of the constraints, which adds an extra
level of complexity to the control design.
Recently, Silva et al. [2004] presented a novel proce-
dure to extend the MLD framework for synthesizing
robust optimal control inputs of constrained PWA sys-
tems subject to bounded additive input disturbances.
The control sequence minimizes, on a finite time in-
terval horizon, a nominal quadratic performance index
guaranteeing that the mode of the system, at each
time instant, is independent of the disturbances and
that all safety/performance constraints are verified.

The approach is based on the robust mode control
concept, which imposes a restriction on the admis-
sible control sequences. From a MPC point of view
robustness is achieved by using open-loop prediction
to estimate the worst-case effect of disturbances on
the state trajectory, which is commonly referred in the
literature as an open-loop MPC strategy. However the
minimization of a nominal performance index is not
suitable for solving the robust stability problem since
the optimal value of the cost index is not a Lyapunov
function. So, the minimization of a cost function that
considers all possible realizations of the uncertainty is
preferred. This MPC strategy is known as the min-max
open-loop approach. Additionally, the inclusion of the
uncertain behavior in the performance index also im-
plies that the performance goal has to be “relaxed”.
So, instead of penalizing the distance from a desired
point of convergence, the performance index penalizes
the distance from a desired set. Therefore, the main
contribution of this paper is the development of an
MLD-based min-max procedure to obtain a stable and
robust MPC algorithm for hybrid systems subject to
bounded additive disturbances. As closed-loop stabil-
ity is a fundamental property of any controller, the
conditions for stability are also presented.
This paper has the following structure. In Section 2
the robust min-max optimal control problem is formu-
lated. In Section 3 the receding horizon control algo-
rithm is developed and the sufficient robust stability
and performance conditions are presented. Section 4
presents the simulation results for the hybrid two tanks
system subject to bounded additive disturbances. Fi-
nally, some conclusions are drawn in Section 5.

2. PROBLEM DEFINITION

Consider the following discrete-time PWA system
subject to bounded additive exogenous disturbances,
with known initial state, x0:

xk+1 = Aixk + Biuk + ei + Wivk,
[

xk
uk
vk

]
∈ Ωi (1)

where,

Ωi �
{[

x
u
v

]
: Fixk + Giuk + Jivk ≤ hi

}
(2)

where uk ∈ U ⊂ R
nu , xk ∈ X ⊂ R

nx and
vk ∈ V ⊂ R

nv denote the input, state and distur-
bance at time k, respectively. The index i belongs to
a finite set, i.e. i ∈ {1, . . . , s}, and represents the
system mode or the active partition. Each partition Ωi

is defined by a bounded intersection of half-spaces in
the state+input+disturbance space, and so each Ωi is
convex polyhedron. Ai, Bi, Wi, Fi, Gi and Ji are real
matrices of appropriate dimensions, hi is a real vector,
and ei is the affine real vector, for all i = 1, . . . , s.

Moreover, Ω=
s⋃
i=1 Ωi,

◦
Ωi

⋂ ◦
Ωj= ∅, ∀ i �= j, where

◦
Ωi denotes the interior of the polytope Ωi, i.e. the par-
titions have disjoint interiors. For synthesis purposes
the PWA system (1)–(2) is assumed to be subjected to



a set of (possibly time-varying) safety and/or perfor-
mance constraints, called the operational constraints,
on the state+input+disturbance space, defined by:

[
xk
uk
vk

]
∈Ck �

{[
x
u
v

]
:Kkxk+Lkuk+Mkvk≤nk

}
(3)

where the disturbance vk ∈ V, with V assumed to
be a polytope containing the origin, according to the
typical unknown-but-bounded characterization of dis-
turbances, with Kk, Lk and Mk being real matrices of
appropriate dimensions, and nk a real vector of appro-
priate dimensions. As shown by Bemporad and Morari
[1999], the PWA system (1)–(2) can be expressed by
the following MLD system, where the last inequality
represents the operational constraints (3):

xk+1 =Bzx
zx(k)+Bzu

zu(k)+Bδδk+Bzv
zv(k) (4a)

E
c/d
δ δk+E c/d

x xk+E c/d
u uk+E c/d

v vk≤e c/d (4b)

E d/c
zx

zx(k) + E d/c
zu

zu(k) + E
d/c
δ δk + E d/c

zv
zv(k)+

+ E d/c
x xk + E d/c

u uk + E d/c
v vk ≤ e d/c (4c)

Ectr
x xk + Ectr

u uk + Ectr
v vk ≤ Ectr (4d)

where inequalities should be understood component-
wise, δk ∈ {0, 1}s is an auxiliary vector that defines
the mode i (or equivalently partition i) of the system
(dim[δ] = (s× 1)), so if mode i is active then δi(k) =
1 and δj(k) = 0, ∀j �= i, i, j ∈ {1, . . . , s}, and
zxi(k) = δi(k)xk are auxiliary continuous variables
(dim[zxi] = dim[x] = (nx ×1)). Using the Kronecker
product to abbreviate notation, zx(k) = δk ⊗ xk,
(dim[zx] = (s ·nx × 1)), zu(k) = δk ⊗ uk (dim[zu] =
(s · m × 1)) and zv(k) = δk ⊗ vk (dim[zv] =
(s · p × 1)). Notice also that, Bzx

≡ [ A1 A2 ... As ],
Bzu

≡ [ B1 B2 ... Bs ], Bδ ≡ [ e1 e2 ... es ], and Bzv
≡

[ W1 W2 ... Ws ]. Due to the well-poseness of (4), i.e.,
due to the fact that all auxiliary variables are uniquely
defined for all (xk, uk, vk), the knowledge of the ini-
tial state, disturbances and control inputs is sufficient
for simulating the dynamic behaviour of the system.
However, the computation of the optimal control se-
quences based on the prediction of future states, as-
suming that disturbances are unknown but with known
bounds, is a much harder task due to the fact that the
predicted state xk is set-valued and non-convex. Thus,
the typical approach of using the extreme disturbance
realizations [Scokaert and Mayne, 1998] can not be
directly applied in this case.

2.1 The Open-Loop Min-Max Optimal Control Problem

Consider the constrained discrete-time PWA system
subject to bounded additive exogenous disturbances
defined in (1)–(2). The finite horizon min-max optimal
control problem for the disturbed PWA system under
operational constraints is defined as follows [Kerrigan
and Maciejowski, 2003].

Problem 1. The PWA formulation
Given an initial state xt at time t and a final time
t + N , find (if it exists) the control sequence u(t) ≡

uN−1
t ≡ (u′(0|t), u′(1|t), . . . , u′(N − 1|t))′ which

(i) transfers the state from xt to a given final set Xf ⊆
X, which contains a final (target) nominal equilibrium
state xf , and (ii) minimizes the performance index

VN (xt,u) � max
v∈VN

JN (xt,u,v) (5)

where JN (xt,u,v) is given by:

N−1∑
k=0

min
a(k|t)∈Xf

‖x(k|t)−a(k|t)‖Q,l+‖u(k|t)−uf‖R,l (6)

subject to:

x(0|t) = xt (7a)

x(k + 1|t) = Aix(k|t)+Biu(k|t)+ei+Wiv(k|t)
for

[
x(k|t)
u(k|t)
v(k|t)

]
∈ Ωi (7b)

[
x(k|t)
u(k|t)
v(k|t)

]
∈ C, ∀v(k|t) ∈ V, for k=0, . . . , N−1

for C �
{[

x
u
v

]
: Kx + Lu + Mv ≤ n

}
(7c)

x(N |t) ∈ Xf , ∀v(.|t) ∈ V, (7d)

where x(k|t) represents the state trajectory, ‖x‖Q,l

and ‖u‖R,l the l-norm of vector x and u weighted with
matrices Q and R, respectively, with Q and R being
full column rank matrices, and uf is the steady-sate
equilibrium input when x(k|t) = xf and disturbances
are not present.

Problem 1 minimizes the worst-case performance cost
(5)–(6) and robustly guarantee constraints (7), at all
time steps k. It also penalizes the distance from a given
final state-set Xf , while the state at the end of the
horizon is not penalized. This structure and properties
of the stage cost, terminal cost, and terminal state-set
are important to achieve closed-loop robust asymp-
totic stability of the MPC controlled system. For con-
verting the PWA-based optimal control Problem 1 into
an MLD-based framework, it is necessary to convert
this infinite-dimensional min-max optimization prob-
lem into a finite-dimensional one.
The robust mode control strategy described in [Silva
et al., 2004] assures that the mode of the system is
“certain” regardless of the disturbances over a fixed
horizon. As a consequence, for each possible “mode
trajectory” the system behaves as a linear (affine) sys-
tem, though time-variant, and so convex state-sets are
generated. Besides, since the stage cost (5) of Prob-
lem 1 is a convex function, the technique presented
in [Scokaert and Mayne, 1998] to convert a min-
max problem into an equivalent convex program based
on the linearity of the dynamic model and convex-
ity of the stage cost and disturbance can be adopted
here. In view of this, consider the following infinite-
dimensional min-max optimization problem, where U
and V are convex polytopes, and function L(., .) is
convex: minu∈U maxv∈V L (u, v). Consider also that
q∈Qv indexes all extreme realizations of v, i.e. those
disturbances v that take values at the vertices of the



polytope V , which are denoted by vq. As L(., .) is
assumed convex relatively to v, the above infinite-
dimensional optimization problem is equivalent to the
following finite-dimensional one:

min
u∈U

max
q∈Qv

L (u, vq) (8)

The previous step was obtained by knowing that the
maximum of a convex function L over a convex set
V is at one of the vertices of V (see e.g. [Boyd
and Vandenberghe, 2004]). In turn, the optimization
problem (8) is also equivalent to the convex program:

min
u,γ

{γ |u ∈ U , L (u, vq) ≤ γ ,∀q ∈ Qv} (9)

Based on the previous technique, the min-max Prob-
lem 1 is now converted into an equivalent finite-
dimensional minimizing one, however restricted by
the robust mode condition and based on the MLD
framework. Consider system dynamics, operational
constraints, and the robust mode condition represented
within the MLD framework, i.e. equations (4). The
robust mode min-max optimal control problem equiv-
alent to Problem 1 is defined as follows,

JN (xt) � min
u,zu,δ,zx,zv,a,γ

γ (10)

subject to ∀q ∈ Qv:
N−1∑
k=0

{‖xq(k|t)−aq(k|t)‖Q,l+‖u(k|t)−uf‖R,l}≤γ

(11a)

Euu + Ezuzu + Eδδ + Ezxzx + Ezvzv ≤
≤ Evv + Ext

xt + E (11b)

a ∈ Xm.N
f , (11c)

xq(k + 1|t) = Bzx
zq
x(k|t) + Bzu

zu(k|t)+
+ Bδδ(k|t) + Bzv

zq
v(k|t) , xq(0|t) = xt (11d)

where u � (u′(0|t), . . . , u′(N − 1|t))′, zu �
(zu

′(0|t), . . . , zu
′(N−1|t))′, δ � (δ′(0|t), . . . , δ′(N−

1|t))′, zx � (z1
x
′(0|t), . . . , z1

x
′(N−1|t), . . . , zm

x
′(N−

1|t))′, zv � (z1
v
′(0|t), . . . , z1

v
′(N−1|t), . . . , zm

v
′(N−

1|t))′, and the vector of parameters relative to the
extreme disturbance realizations is given as v �
(v1′(0|t), . . . , v1′(N − 1|t), . . . , vm′(N − 1|t))′ with
m = pN , where p is the number of vertices of V.
Consider l = ∞ in (11a). As an intermediate result,
notice that if the stage cost L is based on the ∞-norm
(i.e. ‖x ‖∞ = max

1≤i≤n
|xi|) such that

L(x(k|t), u(k|t)) =
=‖x(k|t)−a(k|t)‖Q,∞+‖u(k|t)−uf‖R,∞ (12a)

=‖Q(x(k|t)−a(k|t))‖∞+‖R(u(k|t)−uf )‖∞ (12b)

then the value of min
u∈U,x∈X

L(x,u) can be obtained by

solving the following linear program:

min
u(k|t),x(k|t),α(k|t),β(k|t)

{α(k|t) + β(k|t)}
subject to

−1α(k|t) ≤ Q(x(k|t) − a(k|t)) ≤ 1α(k|t)
−1β(k|t) ≤ R(u(k|t) − uf ) ≤ 1β(k|t) (13)

where α(k|t), β(k|t)∈R, u(k|t)∈U , x(k|t)∈X . Ap-
plying this technique, the MLD-based optimal control
can be formulated as follows.

Problem 2. The MLD formulation with ∞-norm
Given an initial state xt at time t and a final time
t + N , find (if it exists) the control sequence u, and
the auxiliary variables δ, zu, zx, zv, a, α, β and γ
which (i) transfer the state from xt to a given final set
Xf , that contains a final (target) nominal equilibrium
state xf and (ii) that minimizes the performance index

JN (xt,u, zu, δ, zx, zv,a,α,β, γ) � γ (14)

subject to ∀q ∈ Qv , ∀ k = 0, . . . , N − 1:

xq(0|t) = x(0|t) = xt (15a)

xq(k + 1|t) = Bzx
zq
x(k|t) + Bzu

zu(k|t)+
+ Bδδ(k|t) + Bzv

zq
v(k|t) (15b)

Ezx
zq
x(k|t)+Ezu

zu(k|t)+Eδδ(k|t)+Ezv
zq
v(k|t)≤

≤Exxq(k|t)+Euu(k|t)+Evvq(k|t)+e (15c)

xq(N |t) ∈ Xf (15d)

− 1αq(k|t)≤Q (xq(k|t)−aq(k|t))≤1αq(k|t) (15e)

− 1β(k|t) ≤ R (u(k|t) − uf ) ≤ 1β(k|t) (15f)
N−1∑
k=0

αq(k|t) + β(k|t) ≤ γ (15g)

aq(k|t) ∈ Xf , ∀q ∈ Qj
v (15h)

where a� (a1′(0|t), . . . , a1′(N − 1|t), . . . , am′(N −
1|t))′, α�(α1′(0|t), . . . , α1′(N−1|t), . . . , αm′(N−
1|t))′, β � (β′(0|t), . . . , β′(N − 1|t))′, Q and R are
full column rank matrices, and uf is the steady-state
equilibrium input for x(k|t) = xf when disturbances
are not present.

Problem 2 defines a Mixed-Integer Linear Program
(MILP). By substitution of equality (15b) into in-
equalities (15c)–(15e), k = 1. . .N , state variables are
eliminated and a compact notation for Problem 2 is
obtained:

min
σ

γ

subject to: Eσσ ≤ Ext
xt + E

where, σ �
(
u′, zu

′, δ′, zx
′, zv

′,a′,α′,β′, γ
)′

.

3. THE RECEDING HORIZON CONTROL
STRATEGY

The solution of the open-loop min-max robust mode
optimal control Problem 2 can be obtained using a
Branch-&-Bound (B&B) based algorithm to solve the
correspondent mixed-integer optimization. However,
due to the min-max formulation with ∞-norm, each
subproblem associated to the nodes of the B&B tree
defines now a Linear Programming (LP) problem.
Based on this solution a Receding Horizon Control
(RHC) strategy can be implemented such that state-
feedback is obtained. Therefore, consider the follow-
ing Model Predictive Control algorithm.



Algorithm 1. Model Predictive Control Algorithm.
(1) Read state at time t, denoted by x(t), and set

x(0|t) = xt = x(t).
(2) Solve Problem 2 with the B&B based algorithm,

and obtain the optimal input sequence u∗
t .

(3) Apply the first component of u∗
t to the hybrid

system, i.e. apply u(t) = u∗(0|t).
(4) When sampling time is reached, t= t+1, go to 1.

So, based on the MLD prediction model, at each time
step t the controller selects the first sample of the op-
timal sequence of future input actions through an on-
line optimization procedure, which aims at minimiz-
ing a worst-case cost index, and enforces fulfilment of
the constraints and of the robust mode condition for all
possible disturbances. At the next sampling time, i.e.
at time t+1, a new optimal sequence is evaluated to re-
place the previous one, providing the desired feedback
control structure. However, the use of a finite-horizon
implies particular attention to closed-loop stability.

3.1 Robust Stability

As the PWA/MLD system is subject to persistent
disturbances the system must be steered to a target
state-set. So, convergence to a final equilibrium state-
set (or a desired reference trajectory tube) must be
studied. Next, some important definitions to establish
closed-loop robust stability are presented.

Definition 1. The pair (xf , uf ) is said to be a nominal
equilibrium pair of a completely well-posed time-
invariant MLD system if there exists an equilibrium
state xf ∈ R

nx , equilibrium input uf ∈ R
nu , and

equilibrium auxiliary variables δf and zf such that

xf = Axxf + Buuf + Bzzf + Bδδf

Exxf + Euuf + Ezzf + Eδδf ≤ e

is verified.

Notice that an equilibrium pair can be computed by
solving a mixed integer program. Consider also the
following definitions, which can be found in e.g. [Ker-
rigan and Mayne, 2002] and [Blanchini, 1999].

Definition 2. A set Xf is robustly stable iff, for all
ε > 0, there exists a δ > 0 such that d(x(0),Xf ) ≤ δ
implies d(x(i),Xf ) ≤ ε, ∀i ≥ 0 and all admissible
disturbance sequences (where d(z,Z) � min

y∈Z
‖z−y‖,

such that Z ⊂ R
n and ‖.‖ denotes any norm).

Definition 3. The set Xf is robustly asymptotically
(finite-time) attractive with domain of attraction X iff
for all x(0) ∈ X , d(x(i),Xf ) → 0 as i → ∞ (there
exists a time M such that x(i) ∈ Xf , ∀i ≥ M ) for all
admissible disturbance sequences.

Definition 4. The set Xf is robustly asymptotically
(finite-time) stable with domain of attraction X iff it

is robustly stable and robustly asymptotically (finite-
time) attractive with domain of attraction X .

Definition 5. The set Xf is robustly positively invari-
ant for the system x(k + 1) = F (x(k), v(k)) iff
∀x(0) ∈ Xf and ∀v(k) ∈ V, the system behavior is
such that x(k) ∈ Xf , ∀k ∈ N.

Definition 6. The set Xf is robustly controlled invari-
ant for the system x(k + 1) = F (x(k), u(k), v(k))
iff there exists a feedback control law u(k) =
κf (x(k)) such that Xf is a robust positively in-
variant set for the closed-loop system x(k + 1) =
F (x(k), κf (x(k)), v(k)) and u(k) ∈ U, ∀x(k) ∈ Xf .

In order to prove robust stability of the PWA/MLD
when the RHC strategy is applied, consider the fol-
lowing set of assumptions regarding the stage cost
L(.), the terminal cost P (.), and the terminal state
constraint Xf .

Assumptions 1.
a) L(x, u) is a convex function over X×U and there

exists a c > 0 such that L(x, u) ≥ c (d(x,Xf )),
∀(x, u) ∈ (X\Xf ) × U.

b) The stage cost L(x, u)=0 if x∈Xf and u=uf .
c) The terminal cost P (x) = 0, ∀x ∈ R

nx .
d) The terminal state constraint Xf ⊆ X is a

compact convex polyhedron containing the final
nominal state xf in its interior.

e) If the nominal equilibrium pair (xf , uf ) is such

that
[ xf

uf

0

]
∈Ωj then

[
x

uf
v

]
∈Ωj , ∀x∈Xf ,∀v∈V.

f) The terminal state constraint Xf is robustly con-
trolled invariant for u = uf ∈ U and ∀v ∈ V.

Based on the previous set of assumptions, the follow-
ing theorem is presented.

Theorem 1.
Consider that Assumptions 1 hold for Problem 2, and
that XN is a non-empty set defined by all initial states
xt such that Problem 2 is feasible at time t. Then
Xf is robustly asymptotically stable, with domain of
attraction XN , for the closed-loop system when the
MPC Algorithm 1 is applied.

The proof follows from considering standard Lya-
punov arguments.

4. APPLICATION EXAMPLE

The approximate robust MPC strategy is applied to
the perturbed two tanks hybrid system depicted in
figure 1. For a complete description of the system
characteristics see [Silva et al., 2004]. The control
objective is to regulate levels h1 and h2 through the
on-off bidirectional valve V2 and flow Q4 = [0, Q4M ].
The system is perturbed by a bounded disturbance
flow Q5. The PWA model of the system is obtained
by first considering the partition of the state-space



Fig. 1. The two tanks system.

(h1, h2) into four different regions, which have dif-
ferent dynamics dependent on the height of h1, h2,
and hv . Each one of the four state dependent partitions
has different dynamics depending if valve V2 is on or
off, so the system is characterized by eight modes. At
modes 1–4 valve V2 is fully open, while at modes 5–8
it is completely closed. The optimal control problem
to be solved is defined by the following parameters:
N = 3, Q = [ 1 0

0 1 ], R = [ 100 0
0 100 ], x0 = [ 1.0

0.5 ],
xf = [ 2.4655

1.8461 ], uf = [ 0.0152
0.5 ], where (xf , uf ) is an

equilibrium pair. The robust min-max MPC optimal
input trajectory computed by Algorithm 1 resulted in
the optimal state trajectory shown in figures 2 and 3,
where x1=h1 and x2=h2. Notice that, as expected, the
closed-loop converges to the robust invariant set, xf .
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Fig. 2. State partition with optimal trajectory.
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Fig. 3. State evolution.

5. CONCLUSIONS

This paper presented a receding horizon control al-
gorithm for uncertain PWA/MLD systems subject to
bounded additive disturbances that robustly guaran-
tees stability and respect of operational constraints. A
min-max formulation minimizes the worst-case cost
of the performance index, while guaranteeing perfor-
mance/safety constraints for all possible disturbance
realizations. The conditions for robust stability and
performance satisfaction were also presented. The al-
gorithm was then validated in a simulation experiment
of the perturbed hybrid two tanks system.
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