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Abstract: This paper considers the problem of robust eigenstructure assignment, which 
involves finding a feedback gain matrix that makes the closed-loop system insensitive to 
perturbations or parameter variations. The main contribution of the paper is to derive a 
new robustness measure using the matrix perturbation theory. The new measure is used to 
formulate a new method for robust control of the system via state or output feedback. The 
freedom provided by eigenvalue assignment of multivariable systems is applied to 
optimize the new index using genetic algorithms. The new results expressed in this paper 
confirm the previously derived results on robust eigenstructure assignment. In the case of 
state feedback design, the new robustness index verifies a previously proposed robustness 
measure. A numerical example is presented to illustrate the effectiveness of the proposed 
method.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
In many practical control design problems, there 
often exist perturbations or parameter variations in 
the system. Also, the presence of uncertainty in the 
system severely affects the performance and also the 
stability of closed-loop system, designed based on 
the nominal model of the system. If the closed-loop 
system is stable based on the model and also the 
sensitivity of eigenvalues to perturbations and 
parameter variations is minimized, then the 
possibility of instability will be reduced in the case 
of applying the designed controller to the real 
system. It is well known that feedback gain matrix, 
for a multivariable system is in general, non-unique 
for a given set of desired closed-loop poles. So, 
many methods have been proposed on the choice of 
the feedback gain matrix, such that the closed-loop 
system is robust (Kautsky, et al., 1985; Owens and 
O’Reilly, 1989; Duan, 1992; Liu and Patton, 1998; 
Ensor and Davies, 2000). In order to achieve the 
closed-loop system with low eigenvalue sensitivity, 

several measures of eigenvalue sensitivity has been 
introduced (Kautsky, et al., 1985; Liu and Patton, 
1998). Most of the robust eigenstructure assignment 
methods try to minimize these measures. Particularly, 
the condition number of the eigenvector matrix of the 
closed-loop system is widely used. Some effective 
eigenstructure assignment algorithms are proposed 
by Kautsky, et al. (1985) to reduce the sensitivity 
indexes, which are essentially based on the iterative 
pole assignment procedures. Based on a well-known 
eigenstructure assignment approach, Duan (1992) has 
introduced a simple and effective algorithm for 
robust pole assignment, which minimizes the 
sensitivity measures.  However, most of the proposed 
methods deal with the problems in which, full state 
feedback is permitted. In the case of output feedback 
design, there is not a full control over all the closed-
loop eigenvalues and the problem becomes more 
complex. 
 
There are some difficulties associated with using the 
spectral condition number as the measure of 



 

     

sensitivity (Duan 1992; Lam and Yan, 1996; 
Ichikawa, 1998). This leads to use of other 
robustness indexes, which are based on the Frobenius 
norm. For example, Frobenius condition number of 
the closed-loop eigenvector matrix is used, which is 
more conservative than the spectral condition 
number. 
 
In this paper, a new robustness index is introduced 
based on the Frobenius norm. The new index is less 
conservative than the similar measures, in some 
cases. Also, an effective algorithm is suggested for 
the purpose of robust controller design, using an 
eigenstructure assignment approach with the aim of 
minimizing the new robustness measure. Genetic 
algorithm is applied to solve the optimization 
problem. Using the new method, the closed-loop 
stability will be guaranteed in the case of output 
feedback design, if the system is stabilizable. 
 
The new results obtained in this paper are all 
matched with the previously derived results on 
robust eigenstructure assignment. The new algorithm 
tries to assign the eigenvectors of the closed-loop 
system such that they are orthogonal to each other. 
The closed-loop robust stability is achieved via 
normalizing the closed-loop matrix.  
 
The paper is organized as follows: In section 2, the 
problem of robust eigenstructure assignment is 
presented. Section 3 provides the necessary 
background about the eigenstructure assignment. In 
sections 4, new results are achieved based on the 
theoretical analyses. In sections 5 an illustrative 
example is presented to show the effectiveness of the 
proposed method and concluding remarks follow in 
section 6. 
 
 

2. PROBLEM FORMULATION 
 
Consider the linear multivariable system with the 
state-space description: 
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where nnRA ×∈ , mnRB ×∈ , npRC ×∈ and ,nRx ∈  is 
the state vector, mRu ∈  is the input vector and 

pRy ∈ is the output vector. Also, it is assumed that 
),( BA  is controllable and ),( CA  is observable. 

Consider the static output feedback of the form: 
 
                                 Kyu =                                    (2) 
 
Then the closed-loop system representation is given 
by: 
 
                       )()()( txBKCAtx +=&                       (3) 
 

Assume that the set { }nλλλ ,,, 21 K  is composed of 
the desired closed-loop eigenvalues.  In practical 
applications, the system parameters are subjected to 
perturbations and so the eigenstructure of the closed-
loop system varies from the nominal designed 
eigenstructure. The robust eigenstructure assignment 
problem is to find K such that the closed-loop 
eigenstructure is as insensitive as possible to the 
variations of system parameters. The closed-lop 
eigenvalues must be assigned at the desired stable 
places, which are all distinct and different from the 
open-loop poles. These conditions are necessary to 
have a closed-loop system with minimum 
eigenstructure sensitivity to the perturbations 
(Wilkinson, 1965). In addition, the closed-loop 
system must be designed to be as robust as possible 
under a sensitivity index. The specified closed-loop 
performance will be achieved by assigning the set of 
eigenvectors in a special manner. It leads to 
minimize the index and the freedom provided by the 
eigenstructure assignment is used for the purpose of 
robustness.  
 
 

3. EIGENSTRUCTURE ASSIGNMENT 
 
In this section, a simple and effective eigenstructure 
assignment is described, which is used in section 4. 
Suppose that the nominal closed-loop eigenvalues are 
arranged in descending order with respect to their 
real parts, that is: 
 
                 )Re()Re()Re( 21 nλλλ ≥≥≥ L             (4) 
 
It is well-known that Max(m,p) self-conjugate 
eigenvalues and their corresponding eigenvectors can 
be assigned by K (Andry, et al., 1983). So the aim is 
to choose K such that Max(m,p) number of dominant 
eigenvalues of the closed-loop system are assigned in 
the desired places. Also the corresponding 
eigenvectors n

iv ℜ∈  must be assigned to satisfy the 
desired specifications. For any pair of desired closed-
loop eigenvalues and their associated closed-loop 
eigenvectors the following equation holds: 
 
                nivvBKCA iii ,,1)( K==+ λ       (5) 
 
So, it is simple to show that: 
 
                         nimLv iii ,,1 K==           (6) 
 
where: 
 
                            ii KCvm =                                    (7) 
                        BAIL ii
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m
im ℜ∈ are the parameter vectors. Also, the 

eigenvector matrix and parameter matrix are as 
follows: 
 
 



 

     

                          [ ]nvvvV L21=                    (8) 
                       [ ]nmmmM L21=  
 
In the case when the state feedback is permitted, K 
can be easily computed as follows: 
 
                                    1−= MVK                            (9) 
 
Now, for the case in which output feedback is 
required, consider a linear transformation matrix T as 
follows:  
 
                            [ ] nnPBT ×ℜ∈=                     (10) 
 
where )( mnnP −×ℜ∈  is an arbitrary matrix such that 
rank(T)=n. The corresponding eigenvectors under 
such a transformation are: 
 
                                  ii vTv 1−=                            (11) 
 
The feedback gain matrix which solves the 
eigenstructure assignment problem can be computed 
as follows (Jiang, 1994): 
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where: 
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It is shown that if npm >+ , the whole set of 
desired eigenvalues can be assigned with some 
restrictions on eigenvector selection (Liu and Patton 
,1998). Other approaches for output feedback 
eigenstructure assignment can be used in these cases 
to assign the whole spectrum (Liu and Patton, 1998; 
Duan, 1992). 
 
 

4. ROBUST POLE ASSIGNMENT 
 
The spectral condition number of the closed-loop 
eigenvector matrix (modal matrix) still remains as 
the most widely accepted measure of sensitivity. This 
is because of the Bauer-Fike Theorem, which is 
derived from the matrix perturbation theory 
(Wilkinson, 1965; Golub and Van Loan, 1989; 
Stewart and Sun, 1990). The main question of matrix 
perturbation theory is: How does the eigenstructure 
of a matrix changes when its elements are subjected 
to a perturbation. 

According to the Bauer-Fike Theorem, eigenvalue 
perturbation due to the perturbation E in matrix A is 
bounded by 

22 )( EVκ , where (.)2κ  denotes the 
spectral condition number of (.) . Also V  is the 
modal matrix of A, as defined in (7). So, the spectral 
condition number of the closed-loop modal matrix 
provides a meaningful measure on the sensitivity of 
the closed-loop eigenvalues due to the perturbations 
in system. But there are some difficulties in using the 
spectral condition number as the measure of 
sensitivity (Duan 1992; Lam and Yan, 1996; 
Ichikawa, 1998). It is difficult to handle and in 
practical applications, it may be replaced by 
Frobenius condition number, 

FFF VVV 1)( −=κ , 

where 
F

.  denotes the Frobenius norm of (.) . This 
is a more conservative measure than the spectral 
condition number. But the non-smoothness of the 
spectral norm is removed (Lam and Yan, 1996). In 
this section, a new sensitivity index is proposed 
based on another Theorem derived from the matrix 
perturbation theory.  
 
Before deriving the main results, several basic 
Theorems are presented. In the following Theorems, 
the matrix A which satisfies the property HH AAAA =  is 
called normal (H denotes the conjugate transpose of 
the matrix). Also Schur decomposition (Golub and 
Van Loan, 1989) is used to give some results on 
matrix perturbation theory in the following Theorem.  
 
Theorem 1: Let  
 
                       NDAQQ H +=                          (14)          
 
be a Schur decomposition of nnCA ×∈  where 

),,( 1 ndiagD λλ K= ,  nnCN ×∈ is a strictly upper 
triangular matrix and Q is an appropriate unitary 
matrix. Suppose that nnCE ×∈ is an arbitrary matrix.  
If )( EA +∈ λµ  and p  is the smallest positive 

integer such that 0=pN , then  
 
                  ),max(min /1 pθθλµ

λ
≤−                   (15) 

 
where: 
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(.)λ  means the eigenvalue of (.), λ  is the eigenvalue 

of the matrix A and [ ]ijnN = .  

 
Proof: see (Golub and Van Loan, 1989). 
 
It is shown that Theorem 1 is less conservative than 
Bauer-Fike Theorem, in some cases (Golub and Van 
Loan, 1989). 
 



 

     

Corollary 1: When the closed-loop system matrix in 
(3) is faced with a perturbation matrix E, if K is 
designed such that N is equal to zero, the upper 
bound on variations of closed-loop eigenvalues will 
be minimized. N is the corresponding matrix, 
obtained from Schur decomposition of the closed-
loop system matrix. 
 
Lemma 1:  Matrix nnCA ×∈  is normal if and only if 
the matrix N is equal to zero in the Schur 
decomposition of matrix A. 
 
Proof: see (Golub and Van Loan, 1989). 
 
Theorem 2:  Matrix nnCA ×∈  is normal if and only if  
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where 

F
A  is the Frobenius norm of A. 

 
Proof: It is shown that unitary similarity 
transformations do not affect on the Frobenius norm 
of a matrix. So, it can be concluded that: 
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H AAQQ =                         (18) 

 
If the matrix A is normal, then based on lemma 1, in 
the equation (14) the matrix N=0, and  
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and the sufficient condition is proved. In order to 
show the necessary part of the Theorem, since the 
Schur decomposition of the matrix A gives the 
following: 
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and it is assumed that:  
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it can be concluded that 0=ijn  and N=0, therefore 
the matrix is normal, and the proof is complete.       □ 
 
Corollary 2: When the closed-loop system matrix in 
(3) is subjected to the perturbation matrix E, the 
upper bound on variations of closed-loop eigenvalues 
will be minimized if K is designed such that: 
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In this case, the closed-loop system matrix is a 
normal matrix. 
 

It is shown that if the eigenvectors of a system are 
assigned to match exactly a set of mutually 
orthogonal vectors, then the corresponding 
eigenvalues will have the minimum sensitivity to the 
perturbations and parameter variations (Liu and 
Patton, 1998). There are some sensitivity measures, 
proposed by the authors (Kautsky, et al., 1985; Liu 
and Patton, 1998); when they are minimized, the set 
of closed-loop eigenvectors becomes near 
orthogonal. Also, it is important to note that normal 
matrices are exactly those that possess a complete set 
of orthogonal eigenvectors (Strang, 1986). Therefore, 
the new results are matched with the previously 
derived results. 
 
The mentioned results shows that the following cost 
function can be used as an eigenvalue sensitivity 
index for matrix A: 
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Therefore, to solve the problem of robust pole 
assignment, the output feedback K can be designed 
such that the following index is minimized: 
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Based on the above discussions, an algorithm for 
eigenstructure assignment with minimum sensitivity 
of closed-loop eigenvalues can be given now. 
 
Algorithm: 
 
1) Select the set of desired closed-loop eigenvalues, 
according to the stability and dynamic response 
characteristic requirements of the system: 
 
           { }qλλλ ,,, 21 K      ),( pmMaxq =             (25)  

 
2) For each eigenvalue, calculate the corresponding 
design matrices as follows: 
 
                    BAIL ii

1)( −−= λ                             (26) 

 
3) Minimize the following cost function, in order to 
solve the robust eigenstructure assignment problem:  
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The optimization variables are im , the parameter 
vectors in (6) corresponding to each closed-loop 
eigenvalue. So, the output feedback matrix K  can be 
estimated according to (12) and using the obtained 
parameter vectors. 
  
To solve the optimization problem, Genetic 



 

     

Algorithm is used, which is previously used for the 
purpose of eigenstructure assignment (Patton and 
Liu, 1994; Esna Ashari and Khaki Sedigh, 2004). 
Then at each step, the possible solutions for the 
parameter vectors (chromosomes) will be produced 
using the random search operations. After that, K  is 
estimated according to the selected parameter 
vectors. Then the cost function (27) must be 
computed and a new generation of chromosomes 
should be created. 
 
 If the algorithm is trying to design an output 
feedback, there will not be a full control over all the 
closed-loop eigenvalues. So the chromosomes that 
lead to an unstable closed-loop system must be 
deleted in the process of genetic algorithms.  
 
Remark 1: In the cases in which, all the closed-loop 
eigenvalues can be assigned, especially when a state 
feedback is designed, the term∑

=

+
n

i
i BKA

1

2)(λ is 

constant for a desirable set of closed-loop poles. 
Therefore (24) is reduced to: 
 
                         2

F
BKCAJ +=                           (28) 

 
The index is previously derived by Dickman (1987) 
in a different way. 
 
Remark 2: It is obviously possible to replace the (27) 
with another robustness index (for example, the 
spectral condition number of closed-loop eigenvector 
matrix).  
 
 

5. ILLUSTRATIVE EXAMPLE 
 

Consider the following dynamical system (Liu and 
Patton, 1998): 
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0063.01004.00838.00638.00  
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The desired eigenvalues of the closed-loop system 
are chosen to be: {-0.5, -1, -2, -3, -4}. 
 
Using the method proposed in section 4, the 
following controllers are designed by minimizing 
cost function (26) and also the spectral condition 
number of closed-loop eigenvector matrix, 
respectively: 
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and: 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

72.53635.2734-9.340610.8048-131.4648- 
66.466431.668135.4448-2.6951-245.1060-

2K

 
At the end of design procedures, the cost functions 
will be 2867.162

1 =+
F

BKA  in the first design and   
3665.25)(2 =Vκ in the second design. 

 
For the purpose of comparison between the designed 
controllers and a feedback control matrix that leads 
to sensitive closed-loop system, consider K3: 
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Table 1 Comparison of perturbation effect on 

eigenvalues of closed-loop system 
 

Changes in 
all elements 

of the 
matrix A  

 
Feedback 

matrix 
 

 
closed-loop 
eigenvalues 

 
 
 

 
 

+1% 

K1 
 
 

K2 
 
 

K3 
 
 

-0.5003, -1.0003, 
-1.9998, -2.9995, 

-4.0098 
-0.5004, -1.0000, 
-1.9987, -3.0038, 

-4.0069 
-0.2863, -0.9473, 
-2.9514 ± 1.6005i, 

-3.3733 
 
 
 
 

-1% 

K1 
 
 

K2 
 
 

K3 
 
 

-0.4997, -0.9997, 
-2.0002, -3.0005, 

-3.9901 
-0.4996, -1.0000, 
-2.0013, -2.9962, 

-3.9931 
-0.8783,  

-0.7157 ± 0.6801i 
-3.2207, -4.9597 

 
 
 
 

+10% 

K1 
 
 

K2 
 
 

K3 
 
 

-0.5028, -1.0035, 
-1.9980, -2.9979, 

-4.0959 
-0.5038, -0.9998, 
-1.9878, -3.0376, 

-4.0691 
0.0437, -0.9375, 

-3.1911 ± 5.3831i, 
-3.3221 

 
 
 
 

-10% 

K1 
 
 

K2 
 
 

K3 
 
 

-0.4971, -0.9965, 
-2.0016, -3.0084, 

-3.8982 
-0.4962, -1.0002, 
-2.0141, -2.9608, 

-3.9306 
1.4827, 0.7596, 

-0.9132, -3.2422, 
-8.4888 



 

     

In the last design, the sensitivity measures are as 
follows: 
 

42 108.8124×=+
F

BKCA ,   6
2 101.2310)( ×=Vκ  

 
So the closed-loop system is not well-conditioned 
referring to each of the measures. 
 
The effects of perturbations, on the closed-loop 
eigenvalues of the systems are shown in Table 1. The 
closed-loop systems are subjected to the variation of 
the elements of matrix A in different cases. It is 
evident from the results that the closed-loop systems 
under the feedback matrices obtained by the 
proposed approach are more robust to variations in 
the matrix A. It is interesting to note that in the case 
in which, the additive perturbation is +10% or -10%, 
the closed-loop system under K3 will be unstable. 
But the other closed-loop systems will have small 
variation in their eigenvalues. 
 
 

6. CONCLUSION 
 
This paper has introduced a new approach to design 
robust controllers for multivariable systems. A new 
robustness measure is proposed, which can be 
minimized by assigning the eigenstructure of the 
closed-loop system, appropriately.  The new index is 
less conservative than the similar measures in some 
cases.  Also, it is used to propose an effective method 
of designing the robust controllers. The proposed 
method can be implemented in the case of output 
feedback design. The algorithm tries to make the set 
of closed-loop eigenvectors orthogonal, and the 
closed-loop system will have minimum sensitivity to 
the perturbations of the system parameters. The new 
results expressed in this paper confirm the previously 
derived results on robust eigenstructure assignment. 
In the case of state feedback design, the new 
robustness index verifies a previously proposed 
robustness measure, which was derived in a different 
way. 
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