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Abstract: The old cliché in the title of this paper is irritating, but describes all too well
end-users' common experience of process diagnostics. Expensive tools are not in
systematic use, exhaustive process models become outdated and information produced is
scattered and detached from operational routines. At the same time, development of
computational capability, information and communications technology and user
interfaces, among other things, enable reliable easy-to-use hybrid diagnostic solutions to
be made. In this paper, the topical need for modular, easy-to-use, situational and
contextual process diagnostic approaches is discussed. Examples are given in the field of
pulp and paper industry. Insight into process knowledge and its user-friendly
representation in form of models and diagnostics tools, in particular, is provided.
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1. INTRODUCTION

Papermaking is a good example of today's modern
production process. Paper production lines are
efficient, flexible, reliable and highly automated. The
number of personnel has decreased while the scope
of individual responsibilities has widened.
Production is scheduled as a part of the whole value
chain and increasingly, optimised together with
several production facilities. As a result, timely
correct actions are extremely important for both
human individuals through organisational functions
as well as automated machines.

In the field of medical science, it is well known that
sometimes an operation can be a success, but still the
patient dies. This means that although symptoms are
carefully diagnosed and a cause of illness is found,
this does not always solve all the patient's problems.
This analogy applies to the role of process
diagnostics in modern papermaking.

Applications dedicated to mechanical condition
monitoring, for example, have advanced significantly
from helping to detect symptoms of an incipient
failure towards supporting the diagnoses and action

planning. However, papermaking is not only about
mechanical vibrations. A mechanically very stable
paper machine can still run poorly. The production is
not only about wide scale process stability either. A
very stable paper making line can still produce low
quality paper or even pure waste.

A part of process automation and diagnostics
development has taken place through advanced data
integration, calculation capability and user interface
possibilities provided by modern Information and
Communications Technology (ICT) and automation
system technology. The key issues behind the most
remarkable sustainable development have been
context and situation specific solutions with deeper
knowledge of business processes, raw materials used,
process behaviour, potential failures, effects of such
failures and actions taken both to prevent the failures
as well as to correct or repair them. In effect, models
of the process and human behaviour have been
incorporated into automated solutions.

The present authors propose that process diagnostics
should be approached from a holistic, contextual and
situational viewpoint. Modern process diagnostics
should more support the focal actions, and less



provide an additional, nice-to-know layer of
information (c.f. Happonen and Koiranen, 2004).

2. UTILIZATION OF DESIGN KNOWLEDGE
AND MODELS FOR DIAGNOSTIC PURPOSES

Process models can be considered at several levels.
At unit processes and equipment level, physical and
chemical models are valuable. Detailed design of
material flows and mixing can be done, for example,
with Computational Fluid Dynamic (CFD) models
and simulations. Based on this, also simplified
models for dynamic simulators can be created.
Today, dynamic simulators are often used in
designing automation and control tasks for unit
processes. They are also needed in designing and
tuning of multivariable, predictive controllers.

Regardless of modelling method selected, designing
of the process sets up a nominal performance limit
that cannot be improved without changing the
design. The holistic design of disturbance
elimination typically requires optimisation of task
distribution between process and machinery design
and control design. In the mixing process of a paper
machine, for example, consistency disturbances
could be managed through a holistic approach to
process and control design. In reality this potential is
often neglected (Kokko, 2002)

Regardless of designed target level true process
performance will decrease from the nominal level
because of such issues as actuator wearing, sensor
fouling, other faults and also changes in operational
targets. One of the main purposes of process
diagnostics is to support the operators and
maintenance personnel to maintain the process
performance close to the nominal and to prevent and
solve process problems more efficiently.

When process design knowledge, including the
relevant models is fully available, it can and should
be used for the benefit of process diagnostics. In
many cases, however, this is not possible. Often the
target process is so old that the design knowledge is
outdated, lost or it never even existed in explicit form
for certain process parts. In many cases process and
machinery design have been divided to many
suppliers. In such a situation the available design
knowledge is a function of many partial
optimisations. Typically this kind of shared design
does not give optimal performance although it may
give minimum cost estimate while ordering.

It is well known in the literature (e.g.
Venkatasubramanian, et al., 2003) that the process
diagnostics sets slightly different criteria for process
models than process design and control tuning tasks.

In particular process models needed in diagnostics
purposes should be:
• contextual to be able to acknowledge process

conditions;

• adaptive to keep the model up to date, to reduce
configuring work and to detect new faults when
the old ones still exists;

• informative to give the information needed about
the situation;

• dynamic to deal with process transitions and
with production changes;

• easy to duplicate for large amount of similar
process components;

• stochastic to deal with noise and inaccurate
process models;

These requirements can be derived from the needs of
end-users. In order to be useful a diagnostic solution
has to be smart enough to take circumstances and
other explaining issues into account when supporting
decision making. The user of a diagnostic tool should
also be guided into the right direction towards the
actual reason.

Even if the simulators and models developed at
design phase could not be utilised in diagnostics, the
design knowledge is still valuable while configuring
the diagnostic tool. It is important to know how to
divide the complex process into logical unit
processes, to be able to list all the key components in
various unit processes, to know how to diagnose
them and to know the criteria between good and
deficient performance. The authors maintain that it
brings significant benefits to apply a-priory
knowledge of the most critical unit processes or the
most probable sources of faults compared to methods
utilising pure data mining techniques.

3. DIAGNOSTIC PROCEDURE IS THE BASE
FOR DIAGNOSTIC SOLUTIONS

Human understanding is largely based on
understanding social, contextual meanings
(Happonen, et al., 2003). Such meaning structures
are, in effect, continuously updated models.
Similarly, reliable and useful process diagnostics is
based on "shared meanings" within the whole target
process, including such sub-processes as mechanic,
thermodynamic, hydraulic and human processes. It is
important that the diagnostic system supports the
human way of understanding these complex
structures.

A typical first step in a process diagnostic routine of
a production process is to detect that the process
behaves poorly.  The next step is to describe the
symptoms of the fault. Already based on the
symptoms, an experienced individual may recognise
the situation and immediately knows what to do. If
the situation is unknown, mill personnel need to
investigate the situation to find out reason for poor
operation. First the mill personnel need to make sure
that raw materials are good enough, the process is
operated correctly and other general conditions are
fulfilled. Then the production line is divided into
smaller unit processes according to the symptoms
and verified whether or not they are behaving



normally. In this point the reason is identified to be
in the process or somewhere else.

If the fault is identified to be in the process, it is
tracked into a replaceable or repairable component.
The component can be, for example, a physical part
like a bearing, a piece of software or device like
control valve. Figure 1 illustrates how to track faulty
component from a complicated process. The process
is returned into normal operation by changing or
repairing the right components. If the fault is
identified to be somewhere else, there is no need to
investigate this particular process.

The key design principle of diagnostic tools is that
they should support mill personnel in diagnostic
procedure by investigating automatically and
continuously such key process elements as usage,
raw materials, field devices, control loops, unit
processes and the automation system itself.
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Fig. 1. An example how to track a fault in
complicated process to a replaceable or repairable
component. One faulty component may affect to
several unit processes.

This design principle differs significantly from tools
associated with earlier diagnostic systems utilising
artificial intelligence, for example. Such systems
often focused on automating functions that were
earlier done by mill personnel. As a result, and often
due to technical limitations, such systems were
mainly able to provide information that was self-
evident to users, but could not help in new or
complex situations.

It is relatively easy to make a small-scale diagnostic
solution focusing on certain limited part of a process
but as the history shows, it is extremely challenging,
but not impossible, to create a fully automated,
holistic diagnostic solution for larger process entities.
As discussed in the previous sections, a good starting
point is that a significant amount of the information

needed in diagnostics is already available in the
process design phase.

4. EXAMPLE OF A HOLISTIC VIEWPOINT -
PROCESS DIAGNOSTIC AND MONITORING

TOOLS

As well as a diagnostic procedure can be divided into
alternative paths and components; the same approach
can be inherited into wide-scale diagnostics systems.
A control valve or a pump, for example, can have a
well-defined, unique role in a process. A number of
control valves, however, have also several common
types of performance criteria. As a result, it is
beneficial for an easy-to-use diagnostics system to
dedicate a diagnostics module for such a sub-system
as control valves or pumps.

Traditionally sophisticated diagnostic tools and
condition monitoring has mainly been available for
rotating machinery and expensive devices. During
the last ten years solutions have increasingly been
developed also for intelligent field devices, basic
control loops and DCS itself. Also various tools and
expert systems based on advanced methods have
been developed (Chiang, et al., 2001,
Venkatasubramanian, et al., 2003). These systems
are based on advanced mathematics like PCA, soft
computing or frequency analyses.

A new generic approach introduced in this paper
makes it possible to add unit process level and
traditional field devices into the domain of diagnostic
and condition monitoring in a unified, holistic way.
These diagnostic tools and methods together
automate the diagnostic procedure by monitoring all
devices at every level of the process hierarchy
continuously. Diagnostic information generated by
different applications become useful when it is
integrated using well-known integration techniques
e.g. XML to create a plant wide diagnostic and
condition monitoring application.

This kind of application tells continuously to the user
how different process components at different
hierarchy levels are performing. When there is a
problem, the application can show all poorly
operating components at different process levels.
This way it is easy for a user to see what components
might be responsible for problems detected at high-
level indicators and what parts of the process are
affected. The criticality of the situation is visualised
by how the fault affects to the upper level indicators.

This kind of diagnostic approach is inherently
modular. A successful configuration of such a
solution requires knowledge about what tools and
methods to use with different kind of devices at
different hierarchy levels and what measurements are
needed for successful diagnostics of different kind of
devices. In principle, any proven traditional method
for a certain need could be accepted. In practice, the
present authors maintain that the holistic viewpoint



taken increase awareness of end-user needs. As a
result, also new methodological improvements are
presented.

5.NEW METHODS FOR MODELING AND
DIAGNOSING UNIT PROCESSES IN ORDER TO

REDUCE COMPLEXITY

Several manufacturers of process industry equipment
provide monitoring tools for their devices and unit
processes. By taking these tools into active usage, it
is possible to obtain condition monitoring for the
most common and most critical devices.

However, as discussed above, there are several
reasons why the utilisation of condition monitoring
of processes typically stays far below 100%. The
main reason is perhaps complexity; there are few
standards and this, in combinations with numerous
different devices and manufacturers, makes life
difficult for plant personnel.

With general condition monitoring tools we can
monitor devices that have previously not been
monitored. However, existing general tools
sometimes require tailor-made calculations, or
detailed models, some algorithms employ complex
algorithms with advanced mathematics, they may be
operating-point specific, and they are often difficult
to understand from plant personnel’s point of view.
Principal Component Analysis and Partial Least
Squares, for example, are well known methods for
academics and specialists, but too often tools
utilising such methods require knowledge of
mathematical analysis.

Simple methods that measure distances to alarm and
warning limits are sometimes problematic and even
misleading. They frequently tell more about the way
a device is operating rather than the performance of
the device.

The selection between data driven and analytical
condition monitoring is challenging. Full data driven
methods are problematic, since they require iterative
learning and on-line experts in the interpretation of
alarms and results. On the other hand, analytical
methods (e.g. first principle modelling) tend to
require too much expert work during start-up.

Multivariable Histograms (Fig 2) is a model structure
that is well suited for monitoring purposes. It is open,
non-linear, stochastic, and simple. Moreover,
multivariable histograms model is suitable for on-
line calculations, since model training is extremely
simple being adding observations to histograms.
Another important feature, forgetting, is also easy to
apply on this model structure.
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Fig 2. A multivariable histograms model consists of
one monitored variable (e.g. quality) and
explanatory variables (e.g. operating points).

Based on the multivariable histograms model
structure, we developed a method for condition
monitoring, called Conditional Histograms
Monitoring (CHM). The name refers to the way the
method evaluates performance: the measured quality,
which is a histogram, is compared to a conditional
histogram. The conditional histogram is evaluated
from the reference model, conditionally from the
current state (Friman, 2003). CHM is one of the key
components in the diagnostics; in particular in
ensuring those low-level components are working
properly.

A CHM monitoring task employs two models; the
first model represents long-time performance, and
the second short-time performance. The two models
are updated in the same way, but a forgetting factor
is applied for the short-time model. By comparing
the two models, we obtain the difference in device
performance for actual compared to long-time
operation.

For similar devices, it is useful to employ a common
model for describing long-time performance. Hence
a reliable model is quicker obtained.

In order to incorporate process knowledge casual
relationships are utilised. This means that each
variable is selected as either dependent or
explanatory. For process experts, explanatory
variables and casual relationships are usually trivial,
but they bring intelligence into the model, something
that cannot be obtained from measured data sets. By
connecting CHM monitoring blocks into a
hierarchical structure, where a dependent variable in
one monitoring block is an explanatory variable in
the next process stage, we obtain an intelligent
structure, which is useful for diagnostics purposes.

During normal monitoring, one single trend for each
device is monitored. The trend tells the percentile (0-
100%) of each monitored signal, with extreme values
0% and 100% meaning that the entire short-time



distribution is below or above the conditional
distribution. Trend values close to 50% means that
actual distribution and conditional distribution
overlap, i.e. the device is working consistently.
When the level of percentile trend has significantly
changed, detailed reports may be requested. First we
may check the distributions of explanatory variables;
i.e. we check if the way of operation has changed.
Then we normally investigate, which are the
operating points that work poorly.

CHM has proven its capabilities in condition
monitoring of various devices including pumps, fans,
heat exchangers, and valves. It is a general method
and there are no limitations in device types that can
be monitored. Its flexibility compared to mass-and-
energy-balance calculations has proven to be very
useful. Very often some key measurement is missing,
but some indirect measurement can often be used.
For example, levels can sometimes replace pressure
measurements; electric current can replace electric
power measurements for monitoring purposes. Due
to flexibility, almost any device can be monitored,
and due to simplicity the method has been well
received since histograms are informative and easy
to understand.

6. EXAMPLE CASE: A PULP DRYING
MACHINE

An automated, process wide diagnostic system was
recently installed in a pulp-drying machine
(Huovinen, 2004). For diagnostics purposes, the
process is divided into logical unit processes, such as
stock preparation, short circulation and drying
section. Each of these units is further divided into the
most important control loops, process devices, and
other available measurements, which are monitored
with, appropriate diagnostic tools and methods.

At the same time, unit process specific and process
specific performance indicators are calculated
independently. These indicators include such
measures as productivity, energy consumption,
quality indicators and their deviation, calculated
efficiency and other application specific variables.

The information produced by low-level diagnostic
tools and higher-level performance calculations is
mapped together and visualised to the user with a
traffic light tree (Figure 3). The topology of the tree
is based on the hierarchy of the process, so it is easy
for the user to understand where the fault is and how
it affects into different parts of the process.  The
colour of the traffic light tells the status of the
monitored component. The main objective is to
visualise the diagnostic information same way
despite the method that produced it and “hide” the
complexity of the different diagnostic tools and
methods from the user. The traffic lights are updated
continuously, so user has real time view of the
diagnostic results.

Fig 3. A traffic light tree makes it easy to utilise the
information provided by various diagnostic
methods. A Condition Histogram tool shows that
the cross directional deviation of moisture has
increased.

Each diagnostic module has a method specific
display that gives more information to the user about
monitored component. This information is, however,
needed only when there is something wrong with the
component.

In traditional diagnostic solutions, the values of
performance indexes typically depend strongly on
changing circumstances like production speed and
different product qualities on the process rather than
“real” performance of the process. However, these
circumstances are normal and recurring. Therefore,
common operation points can be identified from
process data using clustering method (Hietanen,
2003, Nyuan, et al., 2004).  When the operation
points are known, it is easy to create a multivariable
histogram model between operation point and
measured process performance.

This way it is possible to eliminate the disturbance
caused by changing circumstances and to reveal the
real process performance. Model structure of the
conditional histograms also reveals those operation
points where the performance is not acceptable.

The installation described here is used by a service
organisation and it has already proven itself useful,
not only as trouble-shooting tool, but also as an early
warning system and research instrument when
optimising the process performance. For example,
knowledge about dependency between operation
point and performance indexes allows unfavourable
operation points to be avoided as much as possible.

In Figure 3, for example, the diagnostic system
reports that conditional histogram analysis has
detected that cross directional deviation of moisture
at the end of the drying machine is bigger than before
at the same operation point. This means that web
moisture is higher at the other edge. This is not yet
serious but badly tilting moisture profile will cause
problems at the cutter and layboy. However, thanks
to the diagnostic system, the plant personnel can be
alarmed about the situation and they can solve the
problem before production loss takes place.



Normally high-level performance indexes are the
only interesting variables and they are closely
supervised. However, developing faults are often
visible in secondary measurements telling how the
system affects to its environment for a long time
before it has any effect on production. For example
sound, mechanical vibration, energy consumption,
temperature or waste may tell a lot about system
health if they are interpreted correctly.

By monitoring primary quality variables only,
developing faults cannot be detected until these
variables are clearly affected, because the control
system tries to keep the quality variables constant as
long as possible. This kind of situation means
production losses, because low quality product
cannot be sold with good price. This is why also low-
level diagnostic is needed: to detect faults already
before they affect to quality variables and
production.

7. CONCLUTIONS

Today, if process knowledge, new methods and
intelligent integration of various diagnostic tools are
utilised, it is possible to implement a comprehensive,
holistic automated diagnostic system. The main
benefits come from user-oriented integration of
diagnostic tools and, thanks to the new methods,
flexibility to increase the amount of equipment in the
domain of condition monitoring.

Through application integration, a computer can
process this information and make a compact easy to
read summary for the user. This means that the
domain of process diagnostics is changing from
separate applications to comprehensive and useful
system helping plant personnel to plan maintenance
activities and to solve process problems as well as to
increase the performance of the process.

Today the amount of measured variables is
increasing rapidly. Automation systems can collect
and process huge amount of data compared to earlier
systems. At the same time process operators has to
take care of much wider process areas than before.
There is an increased need to assist operational
personnel in process and device monitoring.
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