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Abstract: In this paper a new algorithm for local estimation for approximating a
function by means of local models is introduced. The instant or in-time estimation
provides an attractive alternative for nonlinear identification, since it requires less
structural decisions to be made by the user. It represents a hybrid between local and
global modeling. This estimation procedure is combined with a predictive control
algorithm with a modification cost function for efficient control. Simulation results are
provided  to show the results of the proposed approach. Copyright © 2005 IFAC
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1.  INTRODUCTION

Model Predictive Control (MPC) using local models
has been explored in the process control literature in
the context of fuzzy modeling, artificial neural
networks, and other interpolation techniques
(Constantin and Dumitrache, 2002). Fuzzy modeling
approache requires decision on how to partition the
regressor space for good performance at local linear
models. For most applications, this is a highly
iterative process although a few automated methods
have recently emerged.
Neural network based approach can be tedious since
the user must judiciously select good initial
parameter estimates. If the initial parameters are
successful such that the neural network converges,
the user must still decide whether the neural network
structure is adequate and repeat the initial
parameter/structure selection problem all over again.
The instant estimation provides an attractive
alternative for nonlinear identification, since it
requires less structural decisions to be made by the
user. It represents a hybrid between local and global
modeling (Braun, et.al, 2001).

It adaptively select the number of data in the
regressor space to built a local model. It continually
constructs new local models as the current operating
point moves about the regressor space. As a result,
the initialization, optimization and structure selection
isssues of global semiphysical and neural network
modeling are avoided.
The user is not faced with the decisions of how to
partition the regressor space, commonly found with
other local modeling techniques. In an MPC
framework it provides natural local model transition
throught the regressor space. Other MPC controllers
which use local linear models, must decide how to
make transition between local linear models. The
user need only to determine the Nonlinear Auto
Regressive with Exogeneous inputs (NARX)
regressor structure, and a lower bound on the number
of data to be used in the local models. The best fit
global linear ARX structure often provides a good
choice for the NARX structure and the lower bound
on the number of data to be used for the local model
can be determined through validation in a few
number of iterations.
The remainder of the paper is organized as follows.



In section 2 the multimodel estimation technique
based on an iterative selection procedure is
presented. Algorithmic details and theoretical
analysis for model predictive control based on the
proposed identification method can be found in
section 3. Finally, in section 4 a simulation example
of a continuous stirred time reactor control is given.

2.  MULTIMODEL  ESTIMATION

2.1. Global versus local modeling

Global modeling. A structure to be used for the
entire database it is first assumed. In linear
regression the parameters of the model have been fit
by minimizing the sum of square errors over the
entire data set. Dynamical models as the ARX which
has a linear structure are considered as global
models. The idea of global modeling is to compress
all the information contained within the data into a
few parameters. This produces a simple predictor, at
the expense of a biased estimate.
Local modeling. One way to estimate the true value
y at the current operating point x is to take the
average of the response variables produced by a
small neighborhood  around the current operating
point x. In order to improve the estimate it is
possible to give more weight to data closer to the
operating point and less weight to data that are
farther away. These weights can be chosen based on
a kernel function, which explicitly defines the shape
of the weights.

2.2. In-time modeling

The two main issues in local modeling are: deciding
how much data to include when a local estimate is
made what weighting to give the data in that subset.
In-time (IT) modeling extends the local modeling in
some way.  In-time estimator performs the data
selection and weighting on-line at each current point.
As the process moves away from the current
operation point, a subset of the database is selected,
and a new dynamical model is built.
Consider a SISO process with NARX structure
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where f(.) is an unknown nonlinear mapping and e(k)
is an error term modeled as i.i.d. random variables
with zero mean and known variance.
The IM predictor attempts to estimate a value ŷ
based on a local neighborhood of the regressor space.
The regressor vector is of the form
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where na, nb, and d  denote the number of previous
outputs, inputs, and delay in the model.

A local estimate ŷ  can be obtained from the
solution of the weighted regression problem
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where l(.) is a scalar-valued and positive norm
function,  K (.) is a window function (referred to as a
kernel), w is a scaled distance function and h is the
bandwidth. Here, a tricube kernel function that
smoothly descends to zero and has continuous
derivative is used
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The distance function w is designed to determine
how far away are the data in kΩ are from the current
operating point. This function decides how the data
will be weighted by the kernel function.
It can be described as
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D is equal to the inverse covariance of the regressors.
The algorithm should select enough data in the local
neighborhood, such that the least squares problem is
not ill-conditioned. Then the neighborhood size can
be expanded in order to achieve an accepted bias and
variance errors tradeoff. The variance error of the
estimate decreases, while the bias error of the
estimate increases with increasing bandwidth.
Adding points reduces the variances and increases
the bias; on the other hand reducing the number of
neighbors makes the bias smaller at the cost of a
greater variance of the estimator. Thus, different
models are considered, each fitted on a different
number of examples.
The leave-one-out cross-validation procedure is used
to compare them and to select the one for which the
predicted error is smaller. Localized automatic
bandwidth selectors are used to estimate the quality
of fit and a proper balance between bias and variance
error.
Assuming a local linear model structure
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a quadratic norm, l (u) = u2 is used and the model is
then linear in the unknown parameters. The estimate
can be easily computed using the least squares
methods.
A one step ahead prediction is given by
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Each local regression problem produces a single
prediction )(ˆ ty  corresponding to the current
regression vector ϕ(t). To obtain predictions at other
locations in the regressor space, the weights change
and new optimization problems have to be solved.
This is in contrast to the global modeling approach
where the model is fitted to data only once and then
discarded.
The local linear model provides an input-output
linearization
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where A(q-1) and  B(q-1) are polynomials in the
backward time-shift operator q-1 obtained from the
components of θ̂ , and

)(ˆˆ
10 tTϕθθα −=                         (9)

is an offset term.
The bandwidth h controls the neighborhood size and
has a critical impact on the resulting estimate since it
governs a trade-off between  bias and variance errors
of the estimate. Traditional bandwidth selectors
produce a global bandwidth.
In IT estimation, bandwidth is computed adaptively
at each prediction. The method used here is a
localized Akaike Information Criterion (AIC).
The use of entire data set for computing a model and
evaluating the goodness-of-fit for the successive
addition of one data point to the database would
require a great amount of time.  In (Braun, et.al,
2001) an exponential search scheme is proposed.
It can be set a range for the number of data points
[kmin, kmax] in which the exponential update will
search. The value of koptim  used for each data point
in the prediction is evaluated from the instabilities
perspective due to poor data support.
Based on this analysis the value kmin can be
increased. There is no real limit on kmax other than
computation time and database length. kmax can be
set beyond the highest value for koptim observed for
the validation data set. Choosing kmin, and kmax
properly and determining a reasonable regressor
structure are the two critical decisions.
One critical decision associated to model estimation
is the selection of lagged inputs and outputs used as
regressors for the model.
The global linear ARX model is in fact a special case
of IT-MPC predictor. By using a boxcar window
instead of a tricube window and forcing the predictor
to use the entire estimation database, a global linear
ARX model would be created at each step.
Therefore, regressors, which work well for the global
linear  ARX case are likely to be a good starting
point for the more general case of  in-time
estimation.

3. IT-MODEL PREDICTIVE CONTROL

MPC represents a class of discrete-time control
systems which make explicit use of a model to
predict  the process output at future instants. A
receding horizon strategy is used so that at  each
instant the horizon is displaced towards the future.
At  each instant the controller computes a control
sequence that minimizes a given objective function
which penalizes the control error and the control
energy. Only the first control move calculated is fed
to the plant, and then the horizon is advanced and a
new control problem is solved.
To incorporate IT-estimation into MPC controller,
the MPC objective function is chosen as in
(Meadows and Rawlings, 1997). Given the model
description and the knowledge of the current system
state, a control is computed that minimizes the
objective function
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where )(),(),( kQkQkQ uue ∆  represent penalty
weights on the control error, control signal, and
control move size respectively. r represents the

setpoint, u the control signal, and ŷ  the predicted
output.
As new measurements become available, a new
optimization problem is solved. The solution
provides the next control action. This referred to as
the receding horizon principle. A special feature of
the formulation is the presence of the move size in
the objective function. In some process control
applications the move size is restricted due to
actuator constraints.
The main advantage of MPC is that hard constraints
can be specified by the user for the input magnitude,
move size or outputs.
Since optimization  can be computationally intensive
for large prediction horizons often only few control
increments are solve, with the  implicit assumption
that the control action will be held constant for the
remaining moves. The practice of using smaller
horizons has the effect of producing less aggressive
controllers and providing stable control for non-
minimum phase systems (Meadows, 1997).
Since the offset term changes stepwise, a CARIMA
model is chosen such that the controller has integral
action.
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To express the output prediction at time t + k as a
function of future controls, the following identity is
introduced
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By partitioning )()( 11 −− qFqB k   as
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where deg Sk(q-1) = k-1 and deg Sk(q-1) =nb-2, the
output prediction can be rewritten as
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The first term depends on future control actions
whereas the remaining terms depend on measured
quantities only. By introducing
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where si are the coefficients of Sk (q-1) and
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The control move can also be expressed like
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where T is a matrix with 1's in the lower triangle and
diagonal, and u is a vector containing only u(t-1)'s.
The objective function can then be expressed as
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where r denotes the desired reference trajectory. For
the unconstrained case, the minimizing control
sequence is obtained explicitly by ordinary least
squares theory. For the constrained case, the
constraints can be re-formulated in matrix/vector
form and the problem is solved efficiently using
standard numerical optimization algorithms.

The full MPC formulation proposed in this paper
includes the terms for the constraind case in order to
allow for handling of infeasible output constraint
situations. Vectors of slack variables emin and emax,
penalize predicted output constrain violation at each
instant along the prediction horizon. The following
terms are added in the cost  function  ||ε||2Qy + Qy' ε.
This formulation incorporates a weighted endpoint
condition for ensuring stability, as in (Meadows and
Rawlings, 1997).  The number of endpoint
conditions can be adjusted to cover the order of the
system and force the states of the system to zero,
while meeting setpoint at the end of the prediction
horizon.

4.  SIMULATION  RESULTS

Continuous stirred tank reactors (CSTRs) are widely
applied in chemical and biochemical engineering for
the conversion of certain reactants into products.
Usually, for irreversible exothermic reactions, the
adiabatic mode leads to large production rates, so
that in order to keep the reactor temperature within a
given limit, the heat generated has to be removed by
cooling. The vessel is assumed to be perfectly mixed,
and a single first-order exothermic, irreversible
reaction, takes place.
The mass and energy balance of an irreversible,
exothermic, first order reaction can generally be
described as:
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The inlet stream is fed at a constant rate F with
constant concentration CAf into the vessel. The final
concentration of the reactant CA is the controlled
variable and the jacklet temperature Tj is
manipulated to keep the exit stream concentration CA
at the setpoint.
The exiting stream leaves at a rate F and since it is
assumed the vessel is perfectly mixed, the exiting
concentration and vessel concentration are assumed
to be the same. The in-out-flow rate F/V can be
considered as a constant process  parameter, as well
as the area A, the coefficient U of the heat transfer,
the fluid density, the fluid specific heat capacity cp,
and the reaction heat (-∆H), this all for a certain
geometry of the reactor and within a certain selected
reaction range.
Non-adiabatic CSTR reactor parameters are
presented in table 1. The ecuations have been solved
in Simulink environment, using a fixed step-size



T = 0.1hrs and a 4th Runge-Kutta method. The ARX
structure that had the best fit was determined by
examining  values less than 10 for the regression
orders and delay values. The kmin value was chosen
55 and kmax was equal to the length of the estimation
database. The control evaluation focuses on setpoint
tracking ability of the IT-MPC controller with and
without input constraints. The control parameters has
the following values : Qe =1, Qu = 0, Q∆u = 0.001,
Np = 5, Nu = 3.
In the figure 1 it is shown the comparison between
two responses with constrained input in the interval
[265 350] and  [280 340]. The root mean square
values for these cases were rms = 0.3687 and  rms =
0.40662 respectively. In the figure 2 are presented
two responses which differ on the Q∆u penalty value
which was chosen as 0.1 and 0,001. The rms values
was obtained 0.3687 and 0.29651. The situations
with and without endpoint constraints are presented
in figure 3.

Table 1
Parameter Units Value

F/V hr-1 1
k0 hr-1 9703*3600

(- ∆H) Kcal/kgmol 5960
E Kcal/kgmol 11843

Cp ρ Kcal/(m3 °C) 500
Tf °C 25

CAf Kgmol/m3 10
UA/V Kcal/m3°Chr) 150

Tj °C 25

Fig.1.  Tracking with different input constraints

Fig. 2. Tracking with penalties on increment input

Fig. 3.  Tracking with and without endpoint condition

5. CONCLUSIONS

The metodology provided in this paper allows the
user to proceed through a framework of decision
making which can reduce the length and cost of the
nonlinear identification and control design process.
By incorporating an endpoint condition for ensuring
stability, predictive control can handle nonlinear
processes in an efficient way. These performances
benefits have been demonstrated on a continuous
stirred tank reactor simulations.
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