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Abstract: Consideration was given to simulation of the nonstationary flows in a complex configu-
ration of gas transmission systems. Simulation is defined as a generalized solution of the initial 
boundary problem for nonlinear partial derivative equation with discontinuous coefficients describ-
ing the nonstationary distributions of pressures and flows in the system. General solution is defined 
by the finite-volume methods with the use of multigrid approximation. The proposed methods have 
no counterparts and urgent for solving the problems involved in scheduling the flows in gas trans-
mission systems.  Copyright ©2005 IFAC. 
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1. INTRODUCTION 
 

The problems of controlling the processes of gas transmis-
sion in the Gas Transmission Systems (GTS) as a whole 
cannot be resolved without universal adequate models of 
the distributions of pressures and flows in them. In the gen-
eral case, development of these models encounters difficul-
ties due to high dimensionality of the problem and existence 
in the motion equation of discontinuous parameters, inertial 
and nonlinear terms. Dimensionality is defined by the cho-
sen step of the grid approximation of the initial boundary 
for the initial nonlinear equation. The discontinuous pa-
rameters admit existence only of the generalized solution. 
Dimensionality of the problem increases dramatically with 
allowance for the nonlinear dependences because solution 
of the system of nonlinear equations usually comes down to 
solution of a sequence of linear equation systems, the other 
methods being either inadmissible or unadvisable. At abrupt 
jumps of the boundary conditions in emergencies, the iner-
tial term can give rise to the wave pressure fronts, which 
generates the need for much finer steps of the grid approxi-
mation, that is, for even higher increase in dimensionality.  
Therefore, the challenge of the grid (finite-difference, finite-
volume, and others) approximations, that is, simulation, lies 

in the high dimensionality of the grid space of solution ap-
proximation. For the physical GTS’s, it is, therefore, the 
necessary computations are impossible without their paral-
lelization using the multiprocessor computer systems.  

In the normal conditions, the gas flow in the pipeline actu-
ally is not affected by the inertia forces because the wave 
components lack in the solution of (1). Consequently, a 
simplified system without the inertial term can be consid-
ered instead (1).  

For the isothermal )( constT =  flow of the real 
gas )/( zRTp =ρ , the nonstationary pressure distribu-
tion ),( txp  along a unbranched pipeline segment at time t  
is described by the nonlinear partial derivative equations  
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where 2pP =  is the squared pressure, wq ρ=  is the mass 
flow through the unit area of the pipe hydraulic section, 

2/ cp=ρ  is the gas density, z  is the gas compressibility 



 

 

coefficient, R  is the gas constant, T  is the absolute tem-
perature, c  is the acoustic speed in gas, λ  is the coefficient 
of hydraulic resistance, d  is the diameter of the pipe hy-
draulic section, and l  is the pipeline segment length.  

The initial boundary conditions are:  
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)(0 xP  is the pressure distribution along the section at the 

initial time instant )(),(),(),(,0 rtltrtlt tqtqtPtPt =  are 
the given functions of pressure and flow variations at the 
ends of the given segment over the time interval ],0[ T  un-
der consideration. Under these conditions, the two-point ini-
tial boundary problems for the nonlinear parabolic equation 
(1) are posed correctly. Stated differently, continuous varia-
tions of the solution of (1) correspond to the continuous 
variations of the boundary conditions 0=x  and lx =  (2).  

The initial boundary problem that models the nonstationary 
gas flow needs the boundary conditions of the first, second, 
and third kinds at the end and intermediate nodes corre-
sponding to the compressor plants (pressure jump) and run-
offs with abrupt changes in pressure and mass flow, that is, 
the balance either of pressures, −+=∆ )0,(),( xtPxtP  

)0,( −− xtP , or flows, −+=∆ )0,(),( xtqxtq  
)0,( −− xtq , or both. In these conditions, the quasilinear 

uniform equation (1) becomes a nonuniform one with 
piecewise discontinuous functions ),( xtf  in the right-
hand side, that is,  
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Consequently, the problem of modeling a nonstationary gas 
flow in the trunk pipelines of the type at hand is possible 
only in the generalized case. For example, in the Sobolev 
space 2

1
2 LL ⊃ , that is, in the subspace of functions which 

are once differentiable and summed with the squares to-
gether with their first derivatives. 

 
 

2. METHODS OF PERTURBATION FOR  
MODELING NONSTATIONARY GAS FLOWS  

 
Under the normal network operational conditions, the non-
stationary models of gas flow distribution in the scheduling 
problems are defined by the generalized solution of the ini-
tial boundary problem for the quasilinear equation (1′) with 
the boundary conditions of the first, second, and third kinds. 
The following modification of the perturbation method 
(Marchuk et al., 1996) is the most effective for the problem 
of this sort.  

Let us  represent )()()( PuPP δ=χ , ,1)( PPu β−=  
R∈β , and after the change of variable rearrange (1′) in  
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)/)(/)(()(

xtfududP
tududPPuP

=−
−∂∂δ

  (1′′) 

 
Assume now that α−δ=ψ /1/)()()( dudPPuPP , 

0/, >βα=ξ∈α R , substitute )()/1( Pεψ+α  for 
dudPPuP /)()(δ  in (1′′), where 10 ≤ε≤ , and construct 

the perturbed equation fuFtu α=ε−∂∂ )(/ , where 
( )( ) tuuuF ∂∂−β−ξχ= /1/)1()( . If 1=ε , then the per-

turbed equation is reduced to the initial equation (1′), and if 
0=ε , then to the nonperturbed equation 

),(divgrad/ 00 xtfutu α=ξ−∂∂ .  

By subtracting the nonperturbed equation from the per-
turbed one, we obtain the equation in the difference =r  

0uu −= , 0/)(divgrad/ 00 =∂∂+εϕ+ξ−∂∂ tuurrtr , 
where ( ) 1/)1()( −β−ξχ=ϕ uu .  

For sufficiently smooth initial data, the initial boundary 
problem has a unique solution for the nonperturbed equa-
tion, and the relation 1/20 χ<ξ< , where =χ1  

}/||{max dqq λ= , is the sufficient condition for unique-
ness of the solution of the initial boundary problem for the 
equation in the correction r . If the solution of the nonper-
turbed problem 0u , is known, then for calculation of the 
corrections jr  (j = 1,…, J), we get the system of equations 
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and so on. Having calculated J corrections, one can deter-
mine the corresponding approximation by the += 0uu J  
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3. BALANCE METHODS FOR MODELING  
THE NONSTATIONARY GAS FLOWS  

 
At each stage of the perturbation algorithm, the operator 
equations that are identical to within notation are solved. 
First, the nonperturbed equation is solved, and 0u  is deter-

mined. Then, the equations for the corrections Jjrj ,1, =  
are solved successively. Therefore, to describe fully the 
method, it suffices to consider the solution of the nonper-
turbed equation. At any time layer, the explicit and implicit 
grid approximations with the time step τ for the nonper-
turbed equation are defined by the difference-differential 
equations (the subscript is omitted, that is, uu =0 )  

 
,divgrad)/()( )1()1(1)()1( ++−+ α=βξ−τ− nnnn fuuu   (3) 
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The finite-volume (balance) approximations (3) and (4) in 
the space coordinate x  obey the matrix equations  
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( ) ,)(1)()1(1 nnn uBCGCu −τ+=τ −+−            (6) 
 

where the matrices B  and C  and the vector G  corre-
spond to the finite-volume approximations (Hackbush, 
1989) of the terms udivgrad)/( 2−βα , tu ∂∂ / , and fα , 
respectively. The matrix equations (5) and (6) also turn into 
the linear systems of the algebraic equations FAu = , 
where BCA +τ= −1 , )(1)1( nn CuGF −+ τ+=  and 

CA 1−τ= , )(1)( )( nn uBCGF −τ+= − , respectively. 

Equation (5) is solved as follows. The matrices B  and C  
and the vector )1(G  are determined from the given initial 
condition )(|),( 00 xPtxP t == , that is, ( K),( 10

)0( xu=u  

)T
0 )(, KxuK , using the finite-volume approximation, and 

then τ+= /CBA  and )0(11 CuGF −τ+=  are deter-
mined form them. Next, the equation FAu =)1(  is solved, 
and the vector of the solution )1(u  on the first time layer is 
determined. Then, new matrices B  and C  are constructed, 
and the matrix τ+= /CBA  and the vector 

τ+= /)1()2( CuGF  are established from them, equation 
FAu =)2(  is solved, and the vector of the solution )2(u  is 

determined on the second time layer. By continuing this 
process, we get the solution of the initial boundary problem 
for equation (5) on all time layers ]/[,1, τ= Tntn  of the 
modeling time period ],0[ T  under consideration.  

Equation (6) is solved along similar lines, but the external 
iteration on each time layer are much simpler because for 
the finite-volume approximation the matrix C  has only di-
agonal nonzero elements and the vectors of the solution 

)1( +nu  are defined explicitly by the vector of )(nu  from the 
preceding layer. In order to make calculations stable, how-
ever, one needs to observe certain relations between the 
steps in time and along the space coordinate.  

For the finite-volume approximation on the n th time layer, 
the matrices A , B  and C  for equations (5) and (6) obey 
the following schemes of calculations. On each trunk 
branch of the gas pipeline ],0[ l=Ω  we take points with 
the coordinates kx , lxxx Nk =<<≤= LL10 , that is, 

construct the cells ),( 1−=Ω kkk xx , 1,1 −= Nk . The left 
and right halves of the cell kΩ  are represented by the open 
intervals )2/)(,( 1++=Ω′ kkkk xxx , /)(( 1++=Ω ′′ kkk xx  

),2/ kx . Then, construct the finite volumes =Ω k
~ , 

kk Ω′∪Ω ′′= −1 Nk ,1= , around each internal node (Fig. I).  
 
 

 
 
 

 
 

Fig. I. Definition of finite volume around internal node. 
 

The finite volumes corresponding to the boundary nodes 1x  

and Nx  are defined as 11
~ Ω′=Ω  and 1

~
−Ω ′′=Ω NN . On the 

kΩ , we introduce the local coordinates k
k xx =)(

1 , =)(
2
kx  

1+= kx  and notation k
k uu =)(

1 , 1
)(

2 += k
k uu  and k

k ff =)(
1 , 

1
)(

2 += k
k ff . Then, integration of (4) over the finite volume 

kΩ~  enables us to construct the local matrices )(kB and 
)(kC  and the right-hand side vector )(kG  corresponding to 

the finite volumes Nkk ,1,~ =Ω , of the simple node (Fig. I)  
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The elements of the global matrices 

Njiijb
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Njiijc
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=

=C  and the vector T
21 ),,,( Nggg K=G  

of the right-hand side are determined from the elements of 
the local matrices )(kB  and )(kC  and the local vector 

)(kG  by means of assembling, that is, using the operation 
of assembly 

Nk ,1
}{Ass

=
⋅  of the elements of the local ma-

trices according to the global numeration of the finite vol-
umes or nodes of the grid decomposition, that is, 
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For arbitrarily configured pipeline networks, the balance 
models may be generated in a similar way. It suffices to 
specify the means for constructing the finite volumes cor-
responding to the pipeline connecting the nodes. For the 
network node k  (see Fig. II) where three branches meet, 
the finite volume can be defined by ∪Ω ′′=Ω −1

~
kk  

NkNk ,1,1 =Ω′∪Ω′∪ + . Then, the corresponding rows 
of the matrices B  and C  and the vector G consist of the 
following nonzero elements:  
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Fig. II. Definition of finite volume around 3-branch node. 
 

For arbitrarily configured GTS’s, a finite (star-like) volume 
is constructed around each node where three or more trunk 
pipelines meet, and the corresponding nonzero elements 
A  and G  are calculated. 

For discontinuous boundary conditions, the set of nodes of 
the grid decomposition must include the locations of the in-
termediate compressor plants, inflows, and discharges in-
cluding underground storage facilities. For the finite vol-
ume kkk Ω′∪Ω ′′=Ω −1

~  corresponding to a compressor plant 
or source (inflow, runoff, underground storage facility) at 
the active node k , the grid approximation of equation (1) 
along the space coordinate must take into consideration the 
abrupt change in pressure or flow before and after the node 
under consideration.  

 
 

4. STRUCTURAL SYSTEM 
DECOMPOSITION 

 
Since the structure of the matrix A  is defined by the nu-
meration of the approximation nodes on the trunk branches 
of the GTS network, the need appears for establishing the 
optimal order of numeration making the balance mathe-
matical models most efficient. Stated differently, the ap-
proximation nodes must be numerated so that the matrix A  
allows one to decompose the computational procedure in a 
way providing the minimum time losses and amount of 
computations. To attain this goal, one needs to construct an 
oriented graph with the sets of vertices and edges corre-
sponding to the nodes and branches of the GTS at hand. 
Structural decomposition can be done using the heuristic 
methods of parallel and embedded sections with node nu-
meration by the inverse Cuthill&McKee’s algorithm. The 
GTS structure is distinguished for complicated subsystems 
with embedded loops that are connected by narrow elon-
gated (possibly, tree-like) gas pipelines. For such systems, 
the aforementioned methods enable representation of A  as 
a coordinated ordered block matrix with profile arrow-like 
structure. Therefore, the matrix A  is represented as  
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where mii

R ,1, =D , and BD  и mii
B ,1, =D  are the con-

ventional or block-tridiagonal matrices if the corresponding 
pipeline branch has one or more runs, K,,( 21 HHH =  

T), mHK  and ),,,( TT
2

T
1

T
mHHHH K=  are the sparse 

commutative block matrices of connections, some of the 
block may be zero. At that, the corresponding structural de-
composition and numeration of the nodes are defined by the 
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It deserves noting that the block-tridiagonal representation 
of (7) of A  is the most effective one for modeling the 
multi-run corridors of the trunk pipelines with locks. 

For the GTS of configuration of any complexity, the corre-
sponding matrix A  is representable in the block-diagonal 
form similar (9). It is only the number, location, and types 
of the embedded blocks that can vary.  

 
 

5. BLOCK PARALLELIZATION 
OF COMPUTATIONS 

 
To solve equation FAP =  on the n th time layer, it is ad-
visable to use the following scheme of the method of upper 
relaxation:  
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where δ+<ω< 1/21  is the relaxation parameter ( δ  is a 
constant) and the superscripts )1( +s  and )2( s  correspond 
to the numbers of iterations along the space coordinate. At 

1+kx  that, calculations by the first and second rows of (10) 
are carried out alternatively only at the odd and even itera-
tions, respectively.  

If the matrix A  has the form (7), then the multilevel reali-
zation of the method follows the computational scheme 
with three levels of iteration. The first (odd) iteration is car-
ried out using the given initial approximation )0(

Bu  and 

( ) )0()0()1( )1( RRBRRR uDHuFuD ω−+−ω=  and )1(
Ru  is de-

termined. Then, the second (even) iteration =)2(
BB uD  

( ) )0()1(т )1( BBRB uDuHF ω−+−ω=  is performed, and )2(
Bu  

is determined. The following pairwise iterations 
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( 1: += ss ) are carried out in a similar manner, provided 
that the condition ε>− −+ |||| )12()12( ss uu  is satisfied. Re-

alizations of the first, ( )+−ω= )0()1(
BRRR HuFuD  

)0()1( RRuDω−+ , and subsequent odd iterations, that is, 
12 +s , 1>s , consist of similar embedded iterative proce-

dures for solution of the subproblems of the middle level  
 

mii
B

i
R

i
B

i
R

i
Bi

i
i
R ,1,т =





=











F
F

u
u

DH
HD

. 

 
To this end, first the solutions i

Bu , mi ,1= , mi ,1= , of 

the vector equations mii
Ri

i
B

i
B

i
B ,1,т =−= uHFuD , are de-

termined using (8), and then the solutions mii
R ,1, =u , of 

the subproblems of the lower (third) hierarchical level, that 
is, the vector equations mii

Bi
i
R

i
R

i
R ,1, =−= uHFuD , are 

determined for fixed values of mii
B ,1, =u . By means of 

the resulting 
( )T)2(321)12(21)12( ),,(,),( s

BBB
s

RR
s uuuuuu ++ =  one can 

execute the next iteration ( 1: += ss ) to solve the equation 
FAu =+ )12( s  at the upper level. Therefore, the main com-

putational process consists of three identical procedures. 
For one-run and multiple-run GTS branches of the conven-
tional and block-tridiagonal structures, one may use the ef-
fective method of simple factorization to solve the equa-
tions at any hierarchical level.  

To improve precision and efficiency of the proposed ap-
proach without considerable fining of the grid (without in-
creasing the dimensionality of the balance equations), it is 
necessary to employ multi-grid methods based on the re-
laxation scheme in particular, by the parallelized variant of 
the universal multi-grid for the one-dimensional, in the 
space coordinate, problems of modeling. 

The basic algorithm of balance modeling consists of the fol-
lowing stages: (i) construction of the grid =Ω=Ω R(  

Bm Ω∪Ω∪∪Ω∪Ω= )21 K  with the optimal node or-
dering (10), (ii) finite-volume (balance) approximation of 
the boundary problem on the constructed grid correspond-
ing to the considered GTS or UGTS as a whole, (iii) con-
struction and ordering of the grid equations FAu = , and 
(iv) solution of the equation system FAu =  with multi-
level parallelization of calculations.  

 
 

6. MULTIGRID SCHEME OF PARALLELIZATION 
OF CALCULATIONS 

 
If the numbers i

RN  and miN i
B ,1, = , are multiples of 

three, then it is possible to parallelize calculations by con-
structing a hierarchical structure. The set of the grid points 
of the balance approximation is represented as a union of 
the set of nodes and boundaries of the finite volumes. The 
zero level of roughness )1,0()1,0()1,0( fv Ω∪Ω=Ω , 

},1),(5,0:{)1,0( v
1

vfff Nkxxxx kkkk =+==Ω + , 

},1,:{)1,0( vvv Nkxx kk =Ω∈=Ω . 

The initial grid )1,0(Ω  is represented as a union of three 
more rough disjoint grids of the first level, that is, 

),1()1,0( 3
1 αΩ∪=Ω =α

=α , β≠α/=βΩ∩αΩ ,),1(),1( o . 

Each grid 3,1),,1( =ααΩ , is considered recurrently as the 

initial grid for the grids 23,,1),,2( K=ααΩ , and the re-
sulting more rough nine grids make up the second level, and 
so on. Construction of more rough grids lies in eliminating 
two points vΩ  and fΩ  as shown in Fig. III. The multigrid 
scheme of hierarchical calculations can be organized as fol-
lows. The initial equation systems like (5) or (6) that corre-
spond to the considered GTS or UGTS are rearranged by 
the change of variables vuu += )  in  
 

 

 
Fig. III. Operator of multigrid method (first level). 
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With regard for the boundary conditions like (2) trans-
formed in a similar way, systems (5′) or (6′) can be rear-
ranged in the zero level system  
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where the matrix 0A

)
 has the characteristic block-arrow 

structure as above. The equation systems of the first, sec-
ond, and so on levels are constructed according to the 
schemes depicted in Figs. III and IV. 
 
 

 

 

Fig. IV. Rough set of the third level )3( =+L . 
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For the multi-grid structure with three hierarchical levels, 
the third-level grids corresponding to the nodes must com-
ply with the scheme of Fig. III, which means that the inte-
gral 3

}2{
=LJ  in the right-hand side of the equation 

corresponding to the finite volume ],[],[ 145
f
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ff xxxx ≡  

on the rough set of the third level must be calculated as the 
sum of integrals over the nine finite volumes of the finest 
grid of the zero level be-
cause ∪=≡ ],[],[],[ f
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is calculated as usual directly on the rough grid. Systems of 
equations for all levels can be constructed similarly: 
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The multi-grid iterations start at the level of the roughest 
grids +L . The components of the vector Lv  calculated on 
the roughest grids are added to the corresponding compo-
nents of the vector of approximate solution u)  determined 
at the previous iteration.  

If the time of data transfer between the main processor and 
its modules is negligible, then according to the asymptotic 
values of the acceleration )(/)1( MTTSM = , where )1(T  
and )(MT  are, respectively, the times at using one and M  
processors, and the efficiency MSE MM /=  obey the fol-
lowing relations:  
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where 0T  and LT  are the time losses at the zero and L th 
levels. The acceleration and efficiency may be improved if 
the results of computations on the rough grids of the first 
level are assumed to be the basic ones that are usually re-
ferred to as dynamic and the saw-shaped dynamic cycle is 
executed.  

For particular GTS’s  as a whole, the saw-shaped multi grid 
scheme of computations with dynamic cycle is used for 
each level +≤< LL1  beginning from the roughest grids of 
the level +L . Stated differently, if +≤< LL1  then the cor-
responding equation systems of the form (10) are solved for 
any rough grid )1,(LΩ , )2,(LΩ , and )3,(LΩ . Therefore, 
for each time layer, the GTS and UGTS balance models on 
the whole are defined by the solutions of equations like 
(10), the computations consist of 1++L  hierarchical levels 
of the multi-grid scheme. At any level of the multi-grid 
scheme, for all rough grids of a given hierarchical level the 
computations follows scheme (8) according to the structure 
of the decomposition of the matrix 0A

)
, that is, 

mii
R ,1, =D , BD  and mii

B ,1, =D . Consequently, each 
such fragment of the internal procedure consists in turn of 
three hierarchical levels of block iterations of the form (8).  

Convergence of the multilevel computations for the balance 
methods of modeling the non-stationary gas flows in gas 
pipelines of any complexity depends on convergence of the 
solutions of the sequence of equations at the external itera-
tions according to the perturbation algorithm and the se-
quence of linear equation systems in the space coordinates 
on each time layer, that is, on the internal iterations. Re-
peated computational experiments with the models of com-
plex pipeline networks corroborate convergence of the ex-
ternal and internal sequences to the generalized solution of 
the quasi-linear system.  

The structure of the matrix A  will be, obviously, defined 
by the order of numeration of the nodes of the grid ap-
proximation on the branch pipelines of the GTS network, 
which gives rise to the need for choosing an optimal order 
of numeration providing the highest efficiency of the varia-
tion mathematical models.  

 
 

7. CONCLUSIONS 
 

The main advantage of the multilevel balance models of the 
distribution of gas pressures and flows in arbitrarily config-
ured gas pipelines is due to their extreme simplicity and 
universality. These distinctions are most prominent if the 
structural characteristics of the pipeline networks of any 
complexity and the corresponding grid approximations are 
taken into consideration with an accuracy defined actually 
by the source data error. Simplicity and universality of these 
models manifest themselves also at taking into account the 
impact of the control actions at the intermediate nodes 
where the compressor plants and other objects (sources, 
buffer and other consumers) with controlled gas supply and 
runoff are situated.  

The external hierarchical multi-grid iterations with saw-
shaped dynamic cycle on all rough networks of each level 

+≤< LLL 1:  coupled with the internal iterations (8) 
make the performance of the proposed computational meth-
ods hardly improvable.  

The balance models of the non stationary modes of gas flow 
in he gas pipelines of arbitrary configuration enable one to 
solve the main problems of GTS scheduling on the whole 
and in the most general and topical formulation.  
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