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Abstract: This paper presents an intelligent modeling approach, named as free model 
approach, for a closed-loop system identification using input and output data and its 
application to design a power system stabilizer (PSS). The free model concept is 
introduced as an alternative intelligent system technique to design a controller for an 
unknown system with input and output data only, and without the detailed knowledge of 
mathematical model for the system. In the free model, the data used has incremental 
forms using backward difference operators. The parameters of the free model can be 
obtained by the simultaneous perturbation stochastic approximation (SPSA) method. The 
feasibility of the proposed method is demonstrated in a one-machine infinite-bus power 
system. The linear quadratic regulator method is applied to the free model to design a PSS 
for the system, and compared with the conventional PSS in different loading conditions 
and system failures such as the outage of a major transmission line or a three phase to 
ground fault which causes the change of the system structure. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Traditionally, controllers are designed on the basis of 
a mathematical description of a system and its 
linearized model. Therefore, it is difficult to 
implement these model-based controllers to a real 
system, especially, to a system, which is complex 
and nonlinear such as power systems. A power 
system stabilizer (PSS) with the excitation system is 
the most common tool used to enhance the damping 
of low frequency oscillations of a power system. 
Considerable effort has been made to design PSS for 
power systems, most of which is based on deMello 
and Concordia’s pioneering work (deMello and 
Concordia, 1969). They use a linearized model to 
find a proper set of parameters in a fixed structure 
PSS. Linear optimal control and modern control 
theories are also introduced to improve the dynamic 
performance of power systems under the uncertainty 
of power system models (Doi, 1984; Law et al., 
1994). These techniques, however, depend on the 
accuracy of the model, which is less reliable as the 
power system becomes larger. Adaptive techniques 
are also employed in the PSS design for a wide range 
of operations (Ghosh et al., 1984; Gu and Bollinger, 

1989). Recently, there has been a great deal of 
research that reports on artificial neural network and 
fuzzy logic and their applications to control and 
power systems (Zhang et al., 1994; El-Metwally and 
Malik, 1996). 
 
This paper presents the free model approach for 
system identification using input and output data and 
its application to a PSS design. The free model 
concept is introduced as an alternative intelligent 
system technique to design a controller for an 
unknown dynamic system with input and output data 
only, and it does not require the knowledge of 
mathematical model for the system. The idea of free 
model comes from the Taylor series approximation, 
where an output trajectory can be estimated when 
such data as position, velocity, and acceleration are 
known.  
 
One of the techniques using only loss function 
measurements that have attracted considerable 
attention for difficult multivariate problems is the 
simultaneous perturbation stochastic approximation 
(SPSA) method (Spall, 2003). The SPSA is based on 
a highly efficient and easily implemented 
“simultaneous perturbation” approximation to the 



     

gradient: this gradient approximation uses only two 
cost function measurements independent of the 
number of parameters being optimized. The 
parameters of the free model can be obtained by the 
SPSA method using the input-output data and a 
controller can be designed based on the free model. 
The free model is then transformed to a linear state 
space model and the linear quadratic regulator (LQR) 
method (Anderson and Moore, 1990) is used to 
design a controller. In this paper, one machine 
infinite-bus system (Sauer and Pai, 1998) is studied 
to demonstrate the feasibility of the proposed method.  
 
The LQR method is applied to the free model to 
design a PSS for the systems, and compared with the 
conventional PSS (CPSS). This proposed SPSA 
based LQR controller is applied to the test systems 
and compared with the CPSS. Although no 
mathematical model is used to design the controller, 
the proposed controller is robust in different loading 
conditions and system failures such as the outage of 
a major transmission line or a three phase to ground 
fault. 
 
 

2. DESCRIPTION OF THE FREE MODEL 
 
We consider an arbitrary nonlinear time-invariant 
discrete-time system, represented by 
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where  ( )y k i−  and ( )u k j− , for  
0,1, , ,i N= 0,1, ,j M= , denote the delayed 

outputs and inputs, respectively. 
 
It can be shown that the delayed signals are made of 
increments or differences. Using the backward 
difference operator (Phillips and Nagle, 1997) 
defined by  
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the system (1) can be represented as  
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Equation (3) is expanded into Taylor series. 
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 and ( )O k  represents the high 

order terms.  
By subtracting ( )y k from both sides of (4), the above 
equation is represented as following:  
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By neglecting high order terms and dividing both 
sides with Δ , the free model is then defined as 
following:  
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where N  and M are, respectively, the output and 
input orders of the free model, and ( 1)y k +  denotes 
the estimate of ( 1)y k + . The remaining problem is 
how to determine parameters 0,ia b , and ib . Here, 
we use the SPSA method (Spall, 2003) in 
determining these parameters.  The SPSA method is 
based on the least squares problem, which is 
designed to minimize the loss function ( )E θ : 
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where 1 0[ ]T
N Ma a b bθ =  is the parameter vector 

of the free model, y is the plant output and y  
indicates the estimated output of the free model.  
 
 

3. SPSA BASED FREE MODEL 
APPROXIMATION 

 
3.1 The Basic SPSA Algorithm (Spall, 2003) 
 
The goal of the SPSA is to minimize a loss function 

( )L θ , where the loss function is a scalar-valued 
"performance measure" and θ  is a continuous-
valued p -dimensional vector of parameters to be 
adjusted. The SPSA algorithm works by iterating 
from an initial guess, where the iteration process 
depends on the  "simultaneous perturbation" 
approximation to the gradient ( ) ( ) /g Lθ θ θ≡ ∂ ∂ . 
 
Assume that the measurements of the loss function 
are available at any value of θ :  

           ( ) ( )E L noiseθ θ= +                     
where ( )L θ is a differentiable function of θ  and the 
minimum point θ ∗  corresponds to a zero point of the 
gradient, i.e., 

                   ( )( ) 0Lg
θ θ

θθ
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∗

=

∂
= =
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                    (7) 

In cases where more than one point satisfies (7), then 
the algorithm may only converge to a local minimum. 
The modifications of basic SPSA algorithm allow it 
to search for the global solution among multiple local 
solutions. Note also that (7) is generally associated 
with unconstrained optimization; however, through 
the application of penalty function and/or projection 
methods, it is possible to use (7) in a constrained 
problem. 
 
The basic unconstrained SPSA algorithm is in the 
general recursive stochastic approximation (SA) 
form 

                    1 ( )k k kk ka gθ θ θ+ = −                       (8) 



     

where ( )kkg θ  is the simultaneous perturbation 
estimate of the gradient ( ) ( ) /g Lθ θ θ≡ ∂ ∂  at the 

iterate kθ  based on the measurements of the loss 
function and ka  is a nonnegative scalar gain 
coefficient. 
 
The essential part of (8) is the gradient 
approximation  ( )kkg θ . This gradient approximation 

is formed by perturbing the components of kθ  one at 
a time and collecting a loss measurement ( )E i  at 
each of the perturbations (in practice, the loss 
measurements are sometimes noise-free, 

( ) ( )E L=i i ). This requires 2 p  loss measurements 
for a two-sided finite difference approximation. All 
elements of kθ  are randomly perturbed together to 
obtain two loss measurements ( )E i . For the two-
sided simultaneous perturbation gradient 
approximation, this leads to 
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where the mean-zero p -dimensional random 
perturbation vector, 1 2[ , , , ]T

k k k kpΔ = Δ Δ Δ , has a 
user-specified distribution and kc  is a positive scalar. 
Because the numerator is the same in all p  

components of ( )kkg θ , the number of loss 
measurements needed to estimate the gradient in 
SPSA is two, regardless of the dimension p . 
 
3.2 The SPSA Algorithm Implementation for Free 

model Approximation 
 
The step-by-step summary below shows how SPSA 
iteratively produces a sequence of estimates.  
 
Step 1 Initialization and coefficient selection: 
Set counter index 0k = . Pick initial guess 0̂θ  in (5) 
and nonnegative coefficients , , ,a c A α , and γ  in 
the SPSA gain sequences /( 1)ka a A k α= + +  and 

/( 1) .kc c k γ= +  Practically effective values for α  
and γ  are 0.602 and 0.101, respectively. 
Step 2 Generation of simultaneous perturbation 
vector:  
Generate by Monte Carlo a p -dimensional random 
perturbation vector kΔ , where each of the p  
components of kΔ  are independently generated from 
a zero-mean probability distribution satisfying the 
conditions in Spall (Spall, 2003). A simple (and 
theoretically valid) choice for each component of 

kΔ is to use a Bernoulli 1± distribution with 
probability of 0.5 for each 1±  outcome. Note that 
uniform and normal random variables are not 
allowed for the elements of kΔ  by the SPSA 

regularity conditions since they have infinite inverse 
moments. 
 
Step 3 Loss function evaluations:  
Obtain two measurements of the loss function based 
on the simultaneous perturbation around the current 

kθ : ( )k k kE cθ + Δ  and ( )k k kE cθ − Δ  in (6) with the 

kc and kΔ from Steps 1 and 2. 
 
Step 4 Gradient approximations:  
Generate the simultaneous perturbation 
approximation to the unknown gradient ( )kkg θ  
according to (9). It is sometimes useful to average 
several gradient approximations at kθ , each formed 
from an independent generation of kΔ .  
 
Step 5 Updating θ  Estimate:  
Use the standard stochastic approximation form in 
(8) to update kθ  to a new value 1kθ + . Check for 
constraint violation and modify the updated θ . 
 
Step 6 Iteration or Termination:  
Return to Step 2 with 1k +  replacing k . Terminate 
the algorithm if there is little change in several 
successive iterates or the maximum allowable 
number of iterations has been reached.  
 
The choice of the gain sequences ( ka and kc ) is 
critical to the performance of SPSA. With α and γ  
as specified in Step 1, one typically finds that in a 
high-noise setting (i.e., poor quality measurements of 

( )L θ ) it is necessary to pick a smaller a  and larger 
c  than in a low-noise setting. Although the 
asymptotically optimal values of α and γ are 1.0  
and 1/ 6 , respectively, it appears that 1.0α <  
choosing usually yields better finite-sample 
performance through maintaining a larger step size; 
hence the recommendation in Step 1 to use values 
(α and γ ) that are effectively the lowest allowable 
satisfying the theoretical conditions mentioned (Spall, 
2003).  
 
 

4. STATE SPACE REALIZATION AND LQR 
DESIGN 

 
Free model can be easily adopted to design 
controllers with conventional design method. In this 
paper, an LQR is applied to design a controller that is 
called the SPSA based optimal controller. First, a 
linear transformation is introduced to convert the free 
model into a linear model so that the LQR design 
method can be applied (Anderson and Moore, 1990).  
The state variables are defined by the following 
linear transformation: 
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From the linear transformation (10), the thi state 
variable is defined by 
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where 1,2, , ,i N=  and 0 0β = . Solving (10) for 
the output increments,  
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Then applying (12) into (5) and replacing ( 1)y k +  
with ( 1)y k + , 
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which, from (12), can be represented as the following 
equation: 
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Choose iβ  so that the coefficients of ( 1)iu kΔ −  
become zeros, i.e., 
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Then, (14) becomes  

            1 0
1

( 1) ( ) ( )
N

m m
m

x k a x k b u k
=

+ = +∑              (16) 

Now, it remains to derive the ( 1)ix k +  for 2i ≥ . 
From the definition of the backward difference 
operator, and (11), 
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From (17) 
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In (11), the state equation of the thi state variable is 
defined as 
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then by substituting (18) into (19), 
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By using (20) recursively, 
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Using (16), 
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In a matrix form, the state-difference equations of the 
free model in (16) and (21) is then transformed into 
the following linear system: 
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In this paper, the LQR technique is applied to the 
free model to design a power system stabilizer. The 
object of the LQR design is to determine the optimal 
control law u which can transfer the system from its 
initial state to the final state such that a given 
performance index is minimized. The performance 
index is given in the quadratic form  

         ( )
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k
J x k Qx k u k Ru k

∞
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where Q  is positive semi-definite, and R  is 
positive-definite. To design the LQR controller, the 
first step is to select the weighting matrices Q  and 
R . Then, the feedback gain K  can be computed and 
the closed-loop system responses can be found by 
simulation. This method has an advantage of 
allowing all control loops in a multi-loop system to 
be closed simultaneously, while guaranteeing closed-
loop stability. The LQR controller is given by  

                       ( )  ( )u k Kx k= −                         (24) 
where K  is the constant feedback gain obtained 
from the solution of the discrete algebraic Ricatti 
equation: 

               ( ) 1
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In a conventional method to design the LQR 
controller, the controller requires all state variables 
and often an observer is needed. However, the free-
model based realization (22) is observable since all 
the states are constructed from the input–output data 
via (5). Therefore, an observer is not required for 
state feedback control. Since the realization is linear, 
any linear controller design method can be used. 



     

5. SPSA BASED FREE MODEL 
APPROXIMATION 

 
The free model concept is applied to design a PSS 
for a one-machine infinite-bus (OMIB) power system 
(Pai et al., 1997).  For the OMIB power system, the 
q -axis generator model, the static excitation, and 
turbine and governor models are used. Three 
simulation tasks are conducted: first, torque angle 
deviation is simulated in a normal load condition. 
Second, torque deviation is performed in a heavy 
load condition. Third, a three-phase fault is 
considered. All simulations are shown by the 
comparisons between the CPSS and proposed SPSA 
based LQR controller. The proposed controller 
shows the improvement of damping performance for 
a simple second order free model approximation 
( 2N = ). The weight R  is 610−  and the Q matrix 
has elements 6

11 12 21 11=10 , = =0, =1Q Q Q Q .  The initial 
conditions for simulations are torque angle 

 = 0.9767d , the -d q  axis stator currents 
 = 0.6232 dI  and  = 0.8072qI , the -d q  axis stator 

voltages  = 0.4439 dV  and  = 0.8960qV , the internal 
voltage  = 1.0144pqE , the field voltage 

 = 1.5023fdE , and the reference voltage = 1.06refV .  
 
SPSA Based Free Model Approximation: The system 
is disturbed by small noise signals. Then, the system 
input-output pairs are obtained. The system input is 
the controller output in the CPSS, and the system 
output is the angular speed (ϖ ). The reason to use 
the angular speed is that the controller is to improve 
the damping by reducing the coupling effect between 
the governor system and excitation system since the 
governor system acts much slower than excitation 
system. To obtain the system input and output data, 
first exciter signal, which covers interest bandwidth 
(say, 1Hz~5Hz), is given with the input signal of 
conventional PSS. Then, controller input signal and 
its output signal are taken as input and output for 
system identification. Fig. 1 shows the comparison 
between the system output and the SPSA based free 
model output. The SPSA based free model output is 
very close to the system output and the root-mean 
square error is very small as 0.0004106. The 
coefficients of the second-order free model are 

1 2 0=-0.9977, =0.6570, =-0.5331,a a b  and 1 =0.5826b .  
 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10-3

 Time(sec)

an
gu

la
r s

pe
ed

 [p
.u

.]

system output
SPSA based free model output

 
Fig. 1. Comparison of the estimation between the 

system output and the SPSA based free model 
output. 

 

Normal Load Condition: In this case, the torque 
angle is decreased by 0.7767 with =1loadP  and 

=0.2loadQ . Fig. 2 shows the system performance 
between the CPSS and proposed controller. Faster 
damping is recognized in the proposed controller 
case.  
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Fig. 2. Comparison of the system output between the 

CPSS and the proposed controller. 
 
Heavy Load Condition: In this task, the conditions of 
the torque angle and loadQ  are the same as the case B. 
However, to evaluate the heavy load condition, loadP  
is increased by 1.2. Fig. 3 shows the system 
performance between the CPSS and the proposed 
controller.  The better performance in proposed 
controller is also shown. 
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Fig. 3. Comparison of the system output between the 

CPSS and the proposed controller. 
 
Three-Phased Fault Condition: In this task, a fault is 
occurred at 1 second, and the fault line is 
disconnected at 1.04 second. Then, the faulted line is 
reconnected at 1.1 second. The line impedance is 
changed to conduct the fault conditions. For example, 

=0.12R  and = 0.2X  during the fault. =0.6R  and 
=1 X  for the removal faulted line. Fig. 4  shows that 

the faster damping can be recognized in the proposed 
controller.  
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Fig. 4. Comparison of the system output between the 

CPSS and the proposed controller. 
 
Therefore, Figs. 2, 3, and 4 show that the proposed 
SPSA based LQR controller is robust for a wide 
range of operating conditions 



     

6. CONCLUSION 
 
This paper presented the SPSA based free-model 
approximation for system identification using input 
and output data and its application to the design of a 
PSS. The SPSA method is used to find the 
parameters of the free model. The free model is then 
transformed to a linear state space model and the 
LQR technique is used to design a PSS. The SPSA 
based LQR controller was implemented in a one-
machine infinite-bus power system. The proposed 
controller was tested in various operating conditions 
and compared with the conventional PSS. In all cases, 
the proposed controller out-performed the 
conventional PSS and thus demonstrated the 
usefulness of the SPSA based LQR controller. For 
multi-machine power system case, same procedure 
can be applied. Each machine can be excited by its 
own excite signal. In the future, a multi-machine 
power system will be presented. 
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APPENDIX 
 
One-machine infinite-bus power system is shown in 
the one-line diagram in Fig. A1, and a conventional 
power system stabilizer is presented in Fig. A2.  
The axisq − model is used for generator-turbine 
system (Pai et al., 1997). 
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Fig. A1. A one-machine infinite-bus power system. 
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Fig. A2. A conventional PSS for comparison. 
 

Generator-Turbine: 
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Network equation: 
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 AVR and exciter: 

        ( ( ) )fdi
Ai Ai refi i pssi fdi

dE
T K V V U E

dt
= − + −           

Governor(GOV): 

               ( ( ) )i

i i i

g
g g refi i g

dU
T K U

dt
ω ω= − −                 

 

Generator parameters in p.u.: 

    
' '

00.973 0.19 0.55 7.76

9.26 0.01 1 0.1
d d q d

hp c

x x x T

M D F T

= = = =

= = = =
      

AVR and GOV parameters: 
     25 0.05 10 0.1A A g gK T K T= = = =   

Transmission line parameters in p.u.: 
                           0.03 0.5E ER X= =   

Constants of a conventional PSS for comparison: 
 1 20.685 0.1 3 7.091w ccT T T K= = = =  


