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Abstract: Fault detection and isolation (FDI) in dynamic data from an automotive 
engine air path using artificial neural networks is investigated. A generic SI mean value 
engine model is used for experimentation. Several faults are considered, including 
leakage, EGR valve and sensor faults, with different fault intensities. RBF neural 
networks are trained to detect and diagnose the faults, and also to indicate fault size, by 
recognising the different fault patterns occurring in the dynamic data. Three dynamic 
cases of fault occurrence are considered with increasing generality of engine operation. 
The approach is shown to be successful in each case. Copyright © 2005 IFAC 

 
Keywords: fault diagnosis and isolation, radial basis function networks, classification, 
artificial intelligence, neural networks, engine systems. 

 
 
 
 

 
1. INTRODUCTION 

 
Electronic engine control was introduced in 
the1970s, mainly as a result of two government 
requirements. The first was legislation to reduce and 
regulate automobile exhaust emissions and the 
second was the desire to improve the national 
average fuel economy. Evidently, the same factors 
are the main reasons for more recent legislation for 
on-board engine diagnostic capability. The 
environmental Protection Agency (EPA), as well as 
the California Air Resource Board (CARB) 
mandated “On Board Diagnosis II” (OBD-II) for all 
light duty vehicles sold in American fleet starting 
from 1996 (Tan and Saif, 2000).  All diesel cars sold 
in the EU must have an OBD system from year 2003 
(Nyberg and Stutte, 2004).  The same is expected for 
gasoline cars and heavy trucks, etc. OBD-II requires 
continuous monitoring and fault detection capability 
for all vehicle components whose failures can result 
in emission levels beyond 1.5 times of the Federal 
Test Procedure (FTP) standards. 
 
A variety of diagnosis methods have been proposed 
under the umbrella of model-based techniques. The 

feature of all these techniques is that some form of 
mathematical knowledge of the process of interest 
along with inputs and outputs are used to generate 
superfluous information about that process. This 
redundant information is then used in a diagnostic 
process to arrive at decisions regarding fault or no-
fault conditions. Structured hypothesis based on 
statistical hypothesis tests (SHT), observer based 
nonlinear estimation (Yong-Wha, 1998), real time 
supervision using production sensors and additional 
sensors installed (Nyberg and Stutte, 2004) and use 
of artificial intelligence, i.e. fuzzy logic (Laukonen et 
al., 1995) and neural networks (Gomm et al., 2000), 
are examples of the popular FDI systems. In this 
paper neural networks are used for fault diagnosis in 
the air path of an automotive engine. There are many 
neural network architectures available for FDI, which 
can broadly be divided into supervised and 
unsupervised networks. Radial Basis Function (RBF) 
and Multilayer Perceptron (MLP) are examples of 
supervised neural networks whereas ART2 and 
Kohonen network of unsupervised networks (Gomm, 
et al. 2000). Supervised networks have been shown 
to exhibit better classification capabilities than 
unsupervised networks in FDI (Sorsa and Koivo, 



1993).  In this research, four different faults with four 
different levels of intensities are considered i.e. air 
leakage in the intake-manifold, Exhaust Gas Recycle 
(EGR) valve stuck in different positions, intake-
manifold pressure and temperature sensor faults.  
These four faults are similar to those studied in other 
research (e.g., Nyberg and Stutte, 2004). There are 17 
states considered in all including no fault state. The 
transient data for each different state is collected for 
equally distributed throttle angle inputs ranging from 
20o to 40o and RBF networks are used for fault 
pattern classification. 

 
 

2. MEAN VALUE ENGINE MODEL (MVEM) 
 
The engine models are developed based on the 
engine’s physical characteristics and some steady-
state engine data (Cook and Powell, 1993). Such 
models consist of non-linear differential equations, 
table look-ups, regression-based functions and 
empirical formulae.  It is important to note that the 
models derived from the empirical data or physical 
phenomena are generally constructed under idealized 
situations, as such, they may not completely 
represent the practical dynamics or non-linear 
behaviour of engines.  
 
All IC engines contain significant nonlinearities, 
which dominate their dynamic behaviour. The 
MVEM is a fairly good approximation of medium 
speed IC engine dynamics. This model includes the 
latest results and efficiency enhancement system 
such as Exhaust Gas Recycle (EGR) unit. A detailed 
derivation of all the sub-models of the MVEM can be 
found in Hendricks, et al. (2000, 1996 and 1993). 
Only some main mathematical details of relevant 
sub-models are discussed in this paper because the 
main focus of this research is on Fault Detection & 
Isolation (FDI) and not on the MVEM simulation. 
The block diagram of MVEM is shown in fig 1. 
 

 
Fig 1: Engine block diagram 
 
 
2.1 Manifold Filling Dynamics: 
 
The manifold filling dynamics in reality is based on 
as adiabatic operation rather than isothermal. The 
manifold pressure can be represented by equation (1). 
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The only problem with adiabatic assumption is that 
the intake manifold temperature must be known 
accurately and instantaneously (Hendricks, 2001), 
whereas the traditional temperature transducers have 
a time constant of three seconds. Using the law of 

energy conservation a state equation which describes 
the time development of the intake manifold 
temperature can be given as: 

⎥
⎦

⎤
⎢
⎣

⎡

−+

−+−−
=

)(

)()1(

iEGREGR

iaatiap

ii

i
i TTm

TTmTm
Vp

RTT
κ

κκ
&

&&
&           (2) 

 
 
2.2 Crank Shaft Speed State Equation 
 
Applying the law of conservation of rotational 
energy, the crankshaft dynamics of an SI engine 
MVEM is described by equation (3). 
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where I  is the scaled moment of inertia of the 
engine and its load and the mean injection/torque 
time delay has been taken into account with 
variable dτ∆ . 
 
 
2.3 Simulation of Adiabatic System 
 
The engine system is implemented in a block 
diagram in Simulink and has throttle angle as the 
only input and manifold temperature, pressure and 
crankshaft speed as the outputs. The simulation is run 
for 6 seconds for every fault with solver options set 
to variable step for ODE45 in MATLAB. 
 
 

3. FAULT-SIMULATIONS 
 

Leakage in the intake manifold fault and EGR valve 
stuck up in different positions fault are simulated in 
the Simulink model of the engine where as the sensor 
faults are calculated from normal temperature and 
pressure values of the intake manifold. All the four 
faults with four different intensities are simulated one 
at a time in the model, and all the three outputs i.e. 
pressure; temperature and crankshaft speed are 
recorded for different faults. 
 
 
3.1 No Fault 
 
For no fault situation, EGR is assumed 1/6th  
(16.67%) of the total air mass flow in the intake 
manifold. It is also assumed that all the sensors are 
working well and there is no leakage in the intake 
manifold. The simulation is run for 6 seconds for no 
fault condition. 
 
 
3.2 Air Leakage Fault 
 
Equation (1) can be modified as 
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Where constant k is added in the model to increase 
the outflow of the intake manifold, and this increase 
in the outlet is treated as air leakage. The air leakage 
is decided as a percentage (5%, 10%, 15%, and 20%) 
of the total air intake in the intake manifold. 
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3.3 EGR Valve Faults 
 
The normal value of EGR is kept as 1/6 of the total 
air mass flow, i.e. 16.67%. The EGR can be as high 
as 20% of the total air mass flow in the intake 
manifold. Thus, a realistic value of EGR feedback is 
chosen for the experiments. The value of EGRm&  for 
different fault intensities are regulated as 0%, 25%, 
50%, 75% and 100% of the total EGR air mass flow. 
Where 0% EGR air mass flow corresponds to the 
EGR valve stuck in hundred percent-closed position 
and 100% corresponds to full EGR air mass flow, i.e. 
no fault condition. 
 
 
3.4 Temperature/Pressure Sensor Faults 
 
Temperature and pressure sensor faults are 
considered in four different intensities: Sensors over-
reading 20% or 10% and sensors under-reading 10% 
or 20% of the normal value The fault data for the 
sensors is generated using multiplying factors (MFs) 
of 1.2, 1.1, 0.9 and 0.8 for over reading 20%, 10% 
and under reading 10%, 20% respectively. Fault data 
for throttle angles between 20o and 40o are generated 
for all the fault conditions including no fault 
condition. All the 17 fault states with MFs are given 
in table 1. 
 
 

Table 1: All 17 fault states and MFs 
 
S. 
N. 

Fault Name MF 

1 No Fault   
2 Leakage 5%   
3 Leakage 10%   
4 Leakage 15%   
5 Leakage 20%   
6 EGR stuck 25% closed  
7 EGR stuck 50% closed  
8 EGR stuck 75% closed  
9 EGR stuck 100% closed  
10 Temp. sensor 20% over reading  MF=1.2 
11 Temp. sensor 10% over reading  MF=1.1 
12 Temp. sensor 10% under reading  MF=0.9 
13 Temp. sensor 20% under reading  MF=0.8 
14 Pressure sensor 10% over read  MF=1.2 
15 Pressure sensor 20% over read  MF=1.1 
16 Pressure sensor 20% under read  MF=0.9 
17 Pressure sensor 10% under read  MF=0.8 
 
 

4. NORMALISATION OF DATA 
 
Data normalisation is necessary before inputting it 
through a Neural Network for learning so that higher 
numerical value data may not dominate the learning. 
More over the graphical data analysis will be difficult 
due to huge difference in the numerical values of 
data. One way to normalise data is to find deviation 
from the normal steady state as given in equation (5). 
   Deviation = ssss xxx )( −                     (5) 
Considering steady state values of all the three 
outputs as normal at 30o throttle angle input for no 
fault condition, the deviation is calculated using 
above formula along with the use of a proper 
multiplier. Throttle angle input is also normalised 

and is used as an input to the neural network for 
training. The four neural network inputs are 
graphically shown in fig 2, 3, 4 and 5. 
 
 

 
 
Fig 2: Normalised throttle angle input graph for all 

the 17 faults for case 1 (section 6.1) 
 
 

 
 
Fig 3: Normalised manifold pressure response for all 

the 17 faults for case 1 (section 6.1) 
 
 

 
 
Fig 4: Normalised manifold temperature response for 

all the 17 faults for case 1 (section 6.1) 
 
 

 
 
Fig 5: Normalised crankshaft speed response for all 

the 17 faults for case 1 (section 6.1) 



5. NEURAL NETWORK ARCHITECTURE 
 

The architecture of an RBF network consists of three 
layers; input, hidden and output. The input layer 
simply receives the network inputs i.e. fault signals 
( x ) and passes them to each node in hidden layer. 
The hidden layer consists of hn  nodes that process 
the input vector. Each node in the hidden layer 
contains individual centre vector ic and a width iρ . 
The Euclidean distance between the input and the 
centre vectors is calculated: 

   22
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where hni ,...,1= , and passed through a non-linear 
basis function to produce hidden node outputs iφ . 
Several choices of basis function are available, i.e. 
thin plate spline, Gaussian function, etc. Gaussian 
basis functions provide a local excitation of the node 
with an output iφ  near zero for inputs far from the 
centre. This is especially suitable for fault diagnosis 
applications and is used in this work. The Gaussian 
basis function is defined as 
   ( )[ ] 0,exp 2 >−= iiii z ρρφ                            (7) 
Finally the network outputs are computed as a linear 
weighted sum of the hidden node outputs: 
   φTWy =              (8) 
where y is the output vector of m outputs, W is the 
output layer weight matrix with element 

ijw connecting hidden node i to output j , and φ is a 
vector containing the hidden node outputs.  
 
RBF networks are trained using the orthogonal least 
squares algorithm (Chen et al., 1991), which builds 
the network up by one hidden node at a time to 
minimise the output error. The same width value is 
used in each hidden node and is chosen by trial and 
error for a small network size with acceptable error 
level. MLP networks were also trained but they take 
much longer time to train and their performance was 
poorer than RBF networks (Sangha et al. 2004). 
 
 

6. TRAINING & TESTING OF NNs 
 

Three cases are considered with increasing generality 
of engine operation. 
 
 
6.1 Case 1: Engine accelerates or retards from mean 

speed and a fault occurs: 
 
In order to train NN dynamically, throttle angle input 
of 20o, 22o, 24o, …, 40o is applied for each fault 
condition, keeping all the initial conditions set to 30o 
throttle angle.  It is assumed that the engine is 
initially running for 30o throttle angle before 
accelerating or retarding the speed i.e. increasing or 
reducing the throttle angle. 30o is chosen as the initial 
condition because it is the mean value of the selected 
operation range of the engine. . Each fault is 
simulated for 6 seconds (20 data points) for each 
throttle angle. All the data is collected and 
normalised. The RBF is trained from this data, for the 
whole range of throttle angles from 20o to 40o with an 
error thresh hold of 300 and spread constant of 0.5. 

The throttle angle is also used as an input along with 
pressure, temperature and speed as shown in fig 6. 
  
 
 
 
 
 
 
 
 
                    fAULT 
 
 
 
 
Fig 6: NN scheme for fault diagnosis 
 
 
It creates a bulky input training-data-matrix of 
4x3400. Training takes as long as 15 minutes on a P4 
computer and forms a network of 191 neurons. 
Finally the trained NN is tested for different throttle 
angle inputs for all the 17 faults. For example data 
generated for 26o throttle angle input is used for 
testing the NN. It is a case when the engine is 
retarding from 30o throttle to 26o throttle angle input 
and a fault occurs. The artificial NN is found very 
well able to classify all the faults correctly.  
 

 
 
Fig 7: RBF Test Results for case 1 
 
 
We find misclassification less than 0.3% (Fig 7). It is 
observed that the misclassification occurs at the 
beginning of the change of one fault to the other. 
Thus by ignoring the first three data sets of each fault 
test result, misclassification can be reduced to 0% 
(Fig. 8). In other words the initial three data sets, out 
of 20 data sets for each fault, are not used in making 
a decision regarding classification of each fault. 
 
 

 
 
Fig 8: RBF Test Results (Improved) case 1 
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6.2 Case 2: Engine runs at constant speed at least for 
6 seconds and a fault occurs: 

 
The output response time for MVEM is about 6 
seconds. If we are able to get a 6 seconds sample data 
of all the output transients (20 points sampled at 0.3 
seconds) then it can be used to classify a fault or no 
fault condition in the engine. 
 
For this part of the research, output data for all the 
three outputs, is collected for different throttle angle 
inputs and the engine is initialised for the same 
throttle angle input. Thus it is assumed that the 
engine is running at fixed throttle angle for 6 
seconds. The training data is collected for 11 
different throttle angles ranging from 20o, 22o, 24o, 
…, 40o for all the 17 different faults. The training 
data sizes 4x3740 and target data matrix 17x3740. 
An RBF NN is trained for an error threshold of 300 
and spread constant of 0.2 and it results in a network 
of 130 neurons. The trained network is then tested for 
different throttle angle input data and 0% 
misclassification is found, which is an ideal result 
(Fig 9): 
 

 
 
Fig 9: RBF Test Results for case 2 
 
 
6.3 Case 3: Engine accelerates or retards from any 

initial speed and fault occurs: 
 
This is the most general case when engine initial 
conditions are any value and engine accelerates or 
retards to any value and a fault occurs at the same 
time. The previous two cases are subsets of this case. 
The engine is initialised to different throttle angles 
for 6 seconds and then accelerated and retarded to 
other throttle angles as shown in Table 2. 
 
 

Table 2: Training data for case 3 
 

Initial 
Throttle 
Angle 

Engine Speed 
Accelerating to 
throttle angle 

Engine Speed 
Retarding to 
throttle angle 
 

22 26,30,34,38 Nil 
26 30,34,38 22 
30 34,38 22,26 
34 38 22,26,30 
38 Nil 22,26,30,34 

 
 
One training data set out of the above five data 
subsets is made to train one NN. It becomes very 
bulky if 20 data points are collected for each six 

second input time for all the 17 faults. It is important 
to collect at least 20 data points to represent the 
dynamic response of the engine properly. The sizes 
of the two input matrices for RBF are 17x8500 and 
4x8500. This large amount of data caused an out of 
memory message from MATLAB during network 
training. An alternative way is to train five different 
NNs for five different subsets of data and then use 
them in parallel for testing purpose. This method is 
also tested in this research. The difficulty with this 
method is that it does not interpolate the unseen test 
data to an acceptable level. 
 
In order to reduce the training data volume, all the 
four faults are considered with two levels of 
intensities instead of four as shown in table 3. It 
reduces the size of the RBF training data to 4x4500 
and 9x4500.  
 
 

Table 3: Faults considered for dynamic FDI 
 
S. No. Fault 

 
1 No Fault (NF) 
2 10% air leakage in intake manifold 
3 20% air leakage in intake manifold 
4 EGR valve stuck in 50% closed position 
5 EGR valve stuck in 100% closed position 
6 Temperature sensor 20% over reading 
7 Temperature sensor 20% under reading 
8 Pressure sensor 20% over reading 
9 Pressure sensor 20% under reading 
 
 
MATLAB could easily handle this data size and an 
RBF is trained with a spread constant of 0.5 and error 
threshold of 300, which results in a network of 65 
neurons. Subsequently the trained RBF network is 
tested for different sets of seen and unseen data as 
shown in table 4. 
 
 

Table 4: Testing data types 
 
Initial throttle 
angle 

Final throttle 
angle 
 

Remarks 

22 22 Seen Data 
26 26 Seen Data 
38 30 Seen Data 
24 30 Partially seen data 
28 32 Unseen data 
36 28 Unseen data 
 
 
Test results show that the trained network is very 
well able to interpolate the unseen data and classifies 
all the faults with 0% misclassification. The result for 
the faults occurring when initial condition of throttle 
angle is 28o and final condition is 32o, are shown in 
fig 10. 
 
Practically there can be infinite number of 
possibilities for initial and final conditions of the 
engine. The network is trained for the above five 
equally distributed typical cases. The network 
interpolates the remaining in-between situations and 
results in proper fault classification. 



 
 
Fig 10: RBF test result for eight faults case 3 
 
 

7. CONCLUSIONS 
 
A different neural network approach for fault 
diagnosis and isolation in automotive engines using 
dynamic data is investigated in this paper. The 
technique is demonstrated for two different 
conditions with results of 0% misclassification. It is 
further used for a more general case as discussed in 
section 6.3. In this case, due to computer memory 
limitation, five different neural networks are trained 
and tested for 0% misclassification for all the 17 fault 
conditions. But these five independent neural 
networks were not able to interpolate the unseen data 
to a satisfactory level of acceptance. Further, a single 
neural network is trained for nine fault conditions in 
order to reduce the size of the training data. The 
trained RBF neural network is found to interpolate 
the in-between values of the data very well and is 
tested for unseen data sets, which resulted in 0% 
misclassification. It is therefore recommended to 
have a single large neural network instead of five 
smaller separate networks. The reason is that a single 
neural network interpolates the in-between values, 
which it has not seen before, in a much better way 
than the five separate neural networks.  
 
Further work of developing algorithms for MATLAB 
to handle large data matrices in network training is 
required to extend the investigations. Testing and 
development for multiple faults, unseen fault 
intensity classification, detection of unknown faults, 
performance with real data and engine parameter 
variations are also required. 
 
 

8. NOMENCLATURE 
 
The following nomenclature is used in this paper: 
 
t time (sec)    
α  throttle plate angle (degrees) 
n engine speed (rpm/1000)  

fm&  engine port fuel mass flow (kg/sec) 
Ta ambient temperature (Kelvin) 

ip  absolute manifold pressure (bar)  
Ti intake manifold temperature K 

atm&  air mass flow past throttle plate (kg/sec) 
TEGR EGR temperature Kelvin  

apm&  air mass flow into intake port (kg/sec) 

EGRm&  EGR mass flow (kg/sec) 

Vi manifold + port passage volume (m3) 
R gas constant (here 287 X 10-5)  
κ  ratio of specific heats = 1.4 for air 
I  crank shaft load inertia (kg m2) 
Pf friction power (kW)   
Pb load power (kW) 
Pp pumping power (kW)   
Hu fuel lower heating valve (kJ/kg) 

dτ∆  injection torque delay time (sec) 
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