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Abstract: Population models are used to describe the behaviour of different
subjects belonging to a population and play an important role in drug pharma-
cokinetics. A nonparametric identification scheme is proposed in which both the
average population response and the individual ones are modelled as Gaussian
stochastic processes. Assuming that the average curve is an integrated Wiener
process, it is shown that its estimate is a cubic spline. An Empirical Bayes (EB)
algorithm for estimating both the typical and the individual curves is worked out.
The model is tested on xenobiotics pharmacokinetic data. Copyright c© 2005 IFAC
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1. INTRODUCTION

In biomedicine one is often faced with the problem
of characterizing the average behaviour as well the
inter-individual variability of a population of sub-
jects. As an example, the analysis of population
data is of primary importance in pharmacology,
where drug responses collected in multiple sub-
jects are used to obtain average and individual
pharmacokinetic and pharmacodynamic models.

When it is possible to obtain a sufficient number of
observations for each subject, model identification
for each individual can be performed separately.
However, in many cases there are technical, eth-
ical and cost reasons that limit the number of
samples that can be collected in each subject.
Some examples are given by toxicokinetic studies
as well as pharmacological experiments involving
critical patients such as neonatal, pediatric or in-
tensive care ones. If the individual models cannot
be identified separately, it is necessary to resort
to so-called “population methods” that provide

the average and individual models from the joint
analysis of all the available data.

Population methods can be divided into three
main groups: parametric, semiparametric and
nonparametric. In the parametric approach a
structural model is assumed, e.g. a compartimen-
tal one, and the model parameters are regarded
as random variables extracted from a distribution
typical of the given population (Beal and Sheiner,
1998), (Wakefield et al., 1994), (Wakefield and
Bennett, 1996), (Jelliffe et al., 2001), (Leary et
al., 2001) (note that the term “nonparametric”
in the last two papers refers to the estimation of
the probability distributions of the parameters of
a grey-box model).

In other cases, for instance in the preliminary
phases of a study, a structural model is not
available and semiparametric or nonparametric
techniques must be used. In the semiparametric
approach, the response curves are modelled as
regression splines (Park et al., 1997), so that the



non-trivial problem of optimally placing the spline
knots arises.

Recently, in order to develop a completely non-
parametric approach, the individual curves have
been modelled as discrete-time stochastic pro-
cesses (e.g. random walks), reformulating the
problem within the framework of Bayesian esti-
mation (Magni et al., 2002). This kind of model
has also been used for the analysis of gene expres-
sion time series measured using DNA micro-arrays
(Ferrazzi et al., 2003). Since sampling schedules
are usually not uniformly spaced in time, it would
be more convenient to model the individual curves
as continuous-time stochastic processes. In this
paper we develop such a continuous-time popula-
tion model. Model identification is carried out ac-
cording to a so-called Empirical Bayes procedure.
The method is tested on pharmacokinetic data
related to xenobiotics administration in human
subjects.

2. STOCHASTIC POPULATION MODEL

Consider the problem of estimating a family of
scalar real-valued continuous-time functions zj(t),
j = 1, ..., N , t ≥ 0, on the basis of noisy samples
taken at discrete instants. More precisely, assume
that the following measurements are available

y
j
k = zj(tjk) + v

j
k, k = 1, ..., nj , (1)

where t
j
k > 0 denotes the k-th sampling instant

(“knot”) for the j-th curve, and the measurements
errors v

j
k are mutually independent and normally

distributed with E[vj
k] = 0, V ar[vj

k] = (σj
k)2.

In an experimental setting, the j-th curve zj(t)
will be representative of the j-th subject (e.g. an
impulse response obtained as a drug concentration
profile in plasma after administration of a unit
bolus). Note that the number and location of the
sampling instants t

j
k may vary from subject to

subject. In the following, each individual curve
will be decomposed as

zj(t) = z̄(t) + z̃j(t)

where z̄(t) is the “typical (average) curve” of
the population and z̃(t) is the “individual shift”
with respect to the average behaviour. For ease of
notation, the observations will be grouped in the
vector

y := [y1
1 ...y1

n1
y2
1 ...y2

n2
...yN

1 ...yN
nN

]T

Letting n = n1 +n2 + ...+nN be the total number
of observations, y is an n-dimensional column
vector. In a similar way it is possible to define
the following vectors

z̄ := [z̄(t11)...z̄(t1n1
) ...z̄(tN1 )...z̄(tNnN

)]T

z̃ := [z̃1(t11)...z̃
1(t1n1

) ...z̃N (tN1 )...z̃N (tNnN
)]T

v := [v1
1 ...v1

n1
v2
1 ...v2

n2
...vN

1 ...vN
nN

]T

Therefore, in vector notation, (1) can be rewritten
as

y = z̄ + z̃ + v

where v ∼ N(0,Σv),Σv := diag{(σ1
1)2...(σN

nN
)2}.

2.1 Typical and individual curves.

In the present paper a stochastic approach is
adopted: the unknown functions are modelled as
stochastic processes and the aim is to compute
their posterior distributions given the observed
data (note that the data are processed off-line, so
that there is no need for the estimator to satisfy
causality constraints).

Assumption 1. The Gaussian stochastic processes
z̄(t) and z̃j(t), j = 1, ..., N , are independent of
each other and of the noise vector v.2

In the following, R̄(t, τ) := Cov[z̄(t), z̄(τ)] and
R̃(t, τ) := Cov[z̃j(t), z̃j(τ)], ∀j, will denote the
auto-covariance functions of the typical curve and
the individual shifts, respectively. Recalling that
z̃j(t) is a shift with respect to the typical response,
it is reasonable to assume that E[z̃j(t)] = 0,∀t,∀j.
As for z̄(t), by properly scaling the data, it can be
assumed without loss of generality that E[z̄(t)] =
0. Since all the involved processes are jointly
Gaussian, the posterior distributions are Gaussian
as well. The following results provide the point
estimates and the confidence intervals for the
typical curve and the individual ones (V ar[y] is
the covariance matrix of the random vector y).

Proposition 1.

ˆ̄z(t) := E[z̄(t)|y] =

N
∑

j=1

nj
∑

k=1

c
j
kR̄(t, tjk) (2)

ẑj(t) := E[zj(t)|y] = ˆ̄z(t) +

nj
∑

k=1

c
j
kR̃(t, tjk) (3)

c = Σ−1
y y (4)

c = [c1
1c

1
2...c

1
n1

...cN
1 ...cN

nN
]T

Σy := V ar[y] = V ar[z̄] + V ar[z̃] + Σv

V ar [z̄] =





R̄(t11, t
1
1) ... R̄(t11, t

N
nN

)
... ... ...

R̄(tNnN
, t11) ... R̄(tNnN

, tNnN
)





V ar[z̃] = blockdiag{R̃1, ..., R̃N}

R̃j :=





R̃(tj1, t
j
1) ... R̃(tj1, t

j
nj

)

... ... ...

R̃(tjnj , t
j
1) ... R̃(tjnj

, tjnj
)







Proof: According to a well-known formula for
jointly Gaussian random variables

E[z̄(t)|y] = E[z̄(t)]

+ Cov[z̄(t),y]V ar[y]−1(y − E[y])

Under the given assumptions, E[z̄(t)] = 0, E[y] =
0 and

Cov[z̄(t),y] = Cov[z̄(t), z̄ + z̃ + v] =

= Cov[z̄(t), z̄] = [R̄(t, t11)...R̄(t, tNnN
)]

The expressions for Σy, V ar[z̄] and V ar[z̃] are
straightforwardly derived from the assumptions.2

Proposition 2.

V ar[z̄(t)|y] = R̄(t, t) − r̄Σ−1
y r̄T

r̄ := [R̄(t, t11)...R̄(t, tNnN
)]

V ar[zj(t)|y] = R̄(t, t) + R̃j(t, t)

− (r̄ + r̃j)Σ−1
y (r̄ + r̃j)T

r̃j := Cov[z̃j(t), z̃]

Proof: By a well-known formula

V ar[z̄(t)|y] = V ar[z̄(t)]

− Cov[z̄(t),y]V ar[y]−1Cov[z̄(t),y]T

Recalling that y = z̄ + z̃ + v and in view of
the independency assumptions, the expression for
V ar[z̄(t)|y] immediately follows. Analogous con-
siderations hold for V ar[zj(t)|y].

2.2 Regularization Network interpretation.

It is interesting to note from (2) and (3) that the
estimates ˆ̄z(t) and ẑj(t) are obtained as linear
combinations of auto-covariance functions cen-
tered at the sampling knots t

j
k. This is the typical

structure that comes out in the Bayesian estima-
tion of Gaussian processes (Wahba, 1990), (Poggio
and Girosi, 1990), (Girosi et al., 1995), (Williams
and Rasmussen, 1996). Remarkably, the same esti-
mator can also be obtained via Tychonov regular-
ization theory (Poggio and Girosi, 1990), (Girosi
et al., 1995). This explains why Poggio and Girosi
(1990) have introduced the term Regularization
Network (RN) to denote such estimators. Also
the estimators of Proposition 1 can be regarded
as RN’s, although of a special type. Having to do
with the identification of a population model, the
number of neurons is 2n instead of n as in the
standard RN, see Fig. 1. A first set of n neurons
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Fig. 1. Regularization Network structure of the
estimator.

receive t as input and have R̄(t, tjk) as activation
function. The estimate ˆ̄z(t) of the typical curve
is obtained by linearly combining these outputs
through the weights c

j
k. A second set of n neurons,

having R̃(t, tjk) as activation functions, produce
outputs that, combined again through the weights
c
j
k, yield the estimates of the individual shifts

ˆ̃zj(t). The weight vector c is obtained as the
solution of a system of n linear equations, see (4).
This is an advantage with respect to other kinds
of networks, such as Multi Layer Perceptrons, in
which the weights have to be computed using
iterative nonlinear optimization.

3. POPULATION SPLINES AND
HYPER-PARAMETERS ESTIMATION

For the results of the previous section to be of
practical use it is necessary to specify the statistics
of the stochastic processes z̄(t), z̃j(t). If frequently
sampled observations were available, the signal
model could be identified by standard black-box
parametric identification methods. On the other
hand, population studies are often characterized
by the scarcity of samples per subject. Therefore,
it is necessary to introduce signal models that
reflect the available a-priori knowledge.

3.1 Modelling the typical curve.

If it is only known that a signal is “smooth”, it is
a common practice to model it as an integrated
Wiener process as done below.

Assumption 2.

·

x̄ (t) = Āx̄(t) + B̄w̄(t)

z̄(t) = C̄x̄(t)

Ā =

[

0 1
0 0

]

, B̄ =

[

0
1

]

, C̄ =
[

1 0
]



where x̄(0) ∼ N
(

0, X̄0

)

, and w̄(t) is a scalar
continuous-time white Gaussian noise, indepen-
dent of x̄(0) and the measurement error vector
v, with E[w̄(t)w̄(τ)] = λ̄2δ(t − τ).2

The above model can describe signals whose initial
conditions are deterministically known by setting
X̄0 = 0. Conversely, if the initial conditions are
completely unknown, it suffices to let X̄−1

0 = 0
(although this requires some modification of the
computational algorithms). The value of λ̄2 affects
the regularity of the realizations so that smaller
values correspond to smoother signals. The a-
priori knowledge is seldom sufficient to specify
λ̄2 so that it must be regarded as a “hyper-
parameter” that will have to be estimated from
the data.

Theorem 1. Under Assumption 2, ˆ̄z(t) defined in
Proposition 1 is a cubic spline with knots located
in the sampling instants {t11t

1
2...t

N
nN

}.

Proof: It is well known that X̄(t) = V ar[x̄(t)] is
the solution of the differential Lyapunov equation

·

X̄ (t) = ĀX̄(t) + X̄(t)ĀT + λ̄2B̄B̄T

X̄(0) = X̄0

Moreover,

R̄(t, τ) =

{

C̄X̄(t)eĀ
T (τ−t)C̄T , t ≤ τ

C̄eĀ(t−τ)X̄(τ)C̄T , t > τ
.

In view of the definition of Ā, B̄, C̄, it follows that
R̄(t, τ), seen as a function of t, is a piecewise cubic
polynomial. In particular, R̄(t, τ) is continuous
with all its derivatives everywhere but in t = τ

where it is continuous up to the second derivative.
Recalling that ˆ̄z(t) in (2) is a linear combination
of the functions R̄(t, tjk) (Proposition 1), the thesis
immediately follows.2

In the literature, it is known that the conditional
expectation of an integrated Wiener process given
discrete observations is a cubic smoothing spline
(Wahba, 1990). In some sense, Theorem 1 gener-
alizes such a result to the analysis of population
of signals so that it is reasonable to define ˆ̄z(t) as
a population smoothing spline.

3.2 Modelling the individual curves.

Coming now to the model for the individual shifts
z̃j(t), the following assumption is in order.

Assumption 3. For j = 1, ..., N ,

·

x̃ (t) = Ãx̃(t) + B̃w̃j(t)

z̃j(t) = C̃x̃(t)

Ã =

[

a1 1
0 a2

]

, B̃ =

[

0
1

]

, C̃ =
[

1 0
]

where a1 < 0, a2 < 0, and x̃(0) ∼ N
(

0, X̃0

)

, and

w̃j(t) is a scalar continuous-time white Gaussian
noise (independent of v, w̄(t) and w̃i(t), i 6= j)
with E[w̃(t)w̃(τ)] = λ̃2δ(t − τ).2

The statistics of z̃(t) will depend on the three
parameters a1, a2, λ̃2. For λ̃2 the same consid-
erations as for λ̄2 hold. The two poles a1 and
a2 provide a few more degrees of freedom for
shaping the auto-covariance of z̃j(t). A possible
drawback may be the difficulty in estimating two
more hyper-parameters from the data. In this
respect, it would be tempting to use a simpler
model and describe also the individual shifts as
integrated Wiener processes (a1 = 0, a2 = 0).
However, observe that the measurements can be
rewritten as

y
j
k = z̄(tk) + v̄

j
k

where v̄
j
k := z̃j(tk) + v

j
k. In other words, as far

as the estimation of z̄(t) is concerned, v̄
j
k acts

as measurement noise. If z̃j(t) were an integrated
Wiener process, its variance would tend to infinity
with t, and the confidence intervals for z̄(t) would
diverge. For this reason, it is more convenient to
select Ã with stable eigenvalues.

In view of Assumption 3, the calculation of R̃(t, τ)
is completely analogous to that of R̄(t, τ) de-
scribed in the proof of Thm. 1.

3.3 Estimating the hyper-parameters.

When one is faced with a Bayesian estimation
problem involving unknown hyper-parameters, a
simple, yet effective, approach is to resort to
the so-called Empirical Bayes method, see e.g.
(MacKay, 1992). In the first step, a maximum
likelihood estimate of the hyper-parameters is
computed. Then, the Bayes estimate is calculated
as if the hyper-parameters were deterministically
known and equal to their maximum likelihood
estimates. In the problem at hand, this leads to
the following estimation algorithm, where θ =
[λ̄2, λ̃2, a1, a2] denotes the hyper-parameters vec-
tor.

Algorithm:

1. Let

θML := arg min
θ

{

ln(det(Σy)) + yT Σ−1
y y

}

2. Let

[λ̄2, λ̃2, a1, a2]
T = θML

and compute ˆ̄z(t) and ẑj(t), j = 1, ..., N according
to Proposition 1.2



When the number of data per subject is scarce,
identificability problems may be encountered in
the estimation of the hyper-parameters. In partic-
ular it may be difficult to reliably estimate both
a1 and a2 so that it may be convenient to impose
some further constraint, e.g. a1=a2.

4. ANALYSIS OF PHARMACOKINETIC
DATA

The proposed population model was tested on a
data set related to xenobiotics administration in
27 human subjects. In the experiment, 8 sam-
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Fig. 2. Xenobiotics concentration data after a
bolus in 27 human subjects: average curve
(bold) and individual curves.

ples were collected in each subject at {0.5, 1,
1.5, 2, 4, 8, 12, 24} hours after a bolus admin-
istration (Magni et al., 2002). The data have
a 10% coefficient of variation. To illustrate the
population variability, the 27 experimental con-
centration curves are reported in Fig. 2, together
with the average curve which, given the number
of subjects, is a reasonable estimate of the typi-
cal curve. Starting from these experimental data,
different sampling schemes can be simulated by
choosing proper subsets of the data. In particular,
we adopted an example of a sparse and not well-
designed sampling protocol: subject #2 is sampled
at time points {t6, t7, t8}, #4 at {t2, t4, t8}, #5 at
{t1, t2}, #7 at {t7}, #9 at {t6}, #10 at {t5}, #18
at {t3, t5}, #19 is fully sampled, #24 at {t4, t8}
and #26 at {t1, t3} (25 samples in total).

At time zero the drug concentration is known to
be equal to zero, so that X̄0 = 0, X̃0 = 0. In
order to take into account the specific features
of the data, some preprocessing was carried out.
Since the observed responses are not stationary
but tend to be smoother towards the end of the
experiment, the times were transformed logarith-
mically by defining a new time axis tnew := ln(t+
1). The analysis was carried out assuming that
a1 = a2 = −2. The hyper-parameters λ̄2 and λ̃2

were estimated via maximum likelihood (λ̄2
ML =
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Fig. 3. Estimated typical curve (bold) with its
95% confidence intervals.

1785.8 , λ̃2
ML = 9257.2). In Fig. 3, the estimated

typical curve with its 95% confidence intervals
is reported together with the data. Compared to
the (piecewise linear) average curve computed on
the basis of all the 216 observations (Fig. 2), the
estimated typical curve (Fig. 3) appears to be a
very satisfactory estimate. It has the advantage of
being continuous up to the second derivative and,
moreover, such a result was obtained using only 25
observations. In Fig. 4 the estimate of the individ-
ual curve of subject #19 is shown together with
its confidence intervals. Rather interestingly, the
confidence limits are narrower in correspondence
of the sampling knots and become larger where
less information is available. For the other individ-
uals, reasonable estimates are obtained, although
with larger confidence intervals (as expected since
most subjects are very scarcely sampled).
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Typical curve
Data of the individual curve
Individual curve
Data
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Fig. 4. Estimated individual curve of subject
#19 (bold) with its 95% confidence intervals.
The estimated typical curve is also reported
(dash-dot).

5. CONCLUDING REMARKS

A new nonparametric continuous-time model for
the population analysis of multiple experiments
has been proposed. The typical curve as well as
the individual ones are modelled as continuous-
time Gaussian processes. If the statistics of the



processes are known, the posterior expectation
given the data (the Bayes estimate), is obtained
as the output of a regularization network, i.e. as
the linear combination of auto-covariance func-
tions centered at the sampling knots. The network
weights are computed by solving a system of linear
equations. Moreover, if the typical curve is mod-
elled as an integrated Wiener process, its estimate
is a cubic spline. In general, the statistics of the
processes are not completely known and depend
on some unknown hyper-parameters. Therefore,
an Empirical Bayes scheme has been proposed:
first the hyper-parameters are estimated via Max-
imum Likelihood (ML) and subsequently their
ML estimates are plugged into the regularization
network.

A first direction of future research will focus on
the implementation of computationally efficient
algorithms. In fact, the proposed scheme requires
the solution of a system of linear equations and
its computational complexity scales with the cube
of the number of observations. By exploiting the
state-space model it may be possible to work out
algorithms based on Kalman filtering whose com-
plexity scales linearly with the number of data. A
second topic that is being currently investigated
is the development of a truly Bayesian estimation
procedure in which the hyper-parameters and the
curves are estimated jointly using Markov Chain
Monte Carlo algorithms.
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