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Abstract: This paper describes the model identification of control valve dynamics
with a time delay. An experimental set-up is used to perform both frequency
response and step response measurements on the control valve. An approximate
realization algorithm and a new time delay estimation method are applied on the
experimental data. The results illustrate that the suggested approach provides a
good time delay estimate and a reasonable state space description for the valve
dynamics. Copyright c©2005 IFAC
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1. INTRODUCTION

In general, the minimal state space realization
problem for linear time-invariant (LTI) systems
refers to finding a state space description that ex-
plains some given data about an LTI system. The
available data are typically the impulse response
of the system, the step response, or more general
input-output or frequency measurements. The for-
mulation of the realization problem originates
from research in the early 1960s on LTI system dy-
namics (Gilbert, 1963; Kalman, 1963). A survey of
results that are related to the minimal state space
realization problem is given in (Schutter, 2000).

1 Corresponding author is J. van Helvoirt, e-mail:
j.v.helvoirt@tue.nl

Next to addressing a fundamental issue in system
theory, the minimal realization problem is also
related to the more involved problem of system
identification, in particular to the field of subspace
identification. Loosely speaking, system identifica-
tion can be seen as a realization problem that is
complicated by noise, nonlinear effects, modeling
errors and so on. In this context, the method given
in (Kung, 1978) can be regarded as a straightfor-
ward system identification method. The method
results in an approximate realization for a mea-
sured impulse response by utilizing the algorithm
from (Ho and Kalman, 1965) in combination with
a singular value decomposition (SVD).

The advantage of the mentioned approximate re-
alization method is its straightforward numeri-
cal implementation, the manifest relation with



the original data throughout the algorithm, and
its computational simplicity. However, one of the
problems that is not explicitly taken into account
by this method, is the presence of a time delay in
the dynamical system.

Numerous strategies have been proposed to iden-
tify the time delay (dead time) in a dynamical
system. In (Pintelon and van Biesen, 1990) a
maximum likelihood estimator is proposed to es-
timate the transfer function of a linear continuous
time system with time delay. A drawback of this
method is the fact that a good initial estimate is
required in order to guarantee convergence of the
cost function to its global minimum. The method
presented in (Jang et al., 2001) uses least squares
estimation to determine model parameters from a
time-domain residual. This approach requires an
inverse Laplace transformation and knowledge of
the model structure in advance. Adaptive identi-
fication schemes for systems with time delay are
suggested in (Tuch et al., 1994; Orlov et al., 2002).
These methods are claimed to perform well but
requirements like measurable states and/or oscil-
lating inputs limit their practical value.

This paper presents the application of an approx-
imate realization algorithm in combination with a
novel time delay estimation method. The dynam-
ical system under study is a control valve that is
used as an actuator in an industrial compressor
test rig. The motivation to analyse the dynamic
behavior of this control valve, comes from the
research that is being carried out with the men-
tioned compression system (Helvoirt et al., 2004).
Next to this practical reason, the control valve
provides a test bed for evaluating the approximate
realization algorithm and the time delay estima-
tion method as identification tools.

The paper is organized as follows. Section 2 intro-
duces the approximate realization method and the
related time delay estimation method. Further-
more, the experimental set-up for the control valve
is discussed. Section 3 starts with an overview
of various measurement results from the control
valve set-up. Then the identification of the con-
trol valve dynamics, by means of the approximate
realization algorithm and time delay estimation
method, are addressed and the obtained results
are presented. Finally, the main results are sum-
marized and discussed in Section 4.

2. PRELIMINARIES

In this section the used theoretical and numerical
concepts are presented, as well as the experimen-
tal set-up that was used. Firstly, an algorithm
that calculates an approximate realization from
impulse response data, is discussed. Then, the

time delay estimation method is introduced that
was used to obtain an estimate of the delay in the
system under study. Finally, some details of the
experimental set-up for the investigated control
valve are given.

2.1 Approximate realization with time delay

The term realization refers to a state-space repre-
sentation of a given input-output mapping. When
the input-output data set is of finite dimensions or
when the data are corrupted with noise we speak
of a partial or approximate realization.

A straightforward way to obtain an approximate
realization for a discrete-time LTI system, is via
the construction of a Hankel matrix from a finite
sequence of measured Markov parameters. Note
that for a discrete-time LTI system the Markov
parameters represent the impulse response of the
system. An approximate realization of appropri-
ate order ρ, is then calculated from the singular
value decomposition (SVD) of this Hankel ma-
trix (Kung, 1978). The algorithm reads 2

(1) Construct the Hankel matrix T according to

Ti,j =

{

Gi+j−1 for i + j ≤ n + 1
0 for i + j > n + 1

from the step response sequence {Sk}
n

k=0

(2) Compute the SVD He = UΣV T of the
matrix He = T (1 :r, 1:r) with r = bn/2c

(3) Construct the matrices Uρ = U(:, 1:ρ),
Vρ = V (:, 1:ρ), and Σρ = Σ(1:ρ, 1:ρ)

(4) Construct the matrices
Ha = T (2 :ρ+1, 1:ρ), Hb = T (1 :ρ, 1),
Hc = T (1, 1:ρ), and Hd = S0

(5) Construct the system matrices of the realiza-
tion

A = Σ
−

1

2

ρ UT
ρ HaV T

ρ Σ
−

1

2

ρ

B = Σ
−

1

2

ρ UT
ρ Hb

C = HcV
T
ρ Σ

−
1

2

ρ

D = Hd

The selection of a value for the order ρ of the
realization determines the singular values that
are considered to be contributing to the order of
the approximate realization. Note that when ρ is
taken too large, the noise present in the Markov
parameters is modelled as a part of the realization.

2 The used Matlab-like notation (:) is a shorthand for an
entire row or column of a matrix. Similarly, (a : b) indicates
consecutive rows or columns.



Now consider a discrete time LTI system with a
time delay of d samples. In the time domain a
delay of d samples results in, for example, a step
response y(k) where the first d samples are equal
to zero. The time delay enters the numerator of
the transfer function as z−d and hence it results in
a pole at z = 0 with multiplicity d. It can be shown
that an approximate realization for systems with
a time delay, often fails to describe the dynamics
of the actual system when the time delay is not
taken into account explicitly.

Therefore, a time delay estimation method is
needed to successfully apply the approximate re-
alization algorithm to systems with a time de-
lay. In (Helvoirt et al., 2005) the following time
delay estimation method is proposed. Suppose
that an impulse response sequence {Gk}

N

k=0 of
length N + 1 is available and that an appropriate
order ρ for the corresponding dynamical system
(without the time delay) is known. Supply the

sequence
{

G
k+d̂

}n

k=0
with n + d̂max ≤ N to the

approximate realization algorithm and determine
for which value of d̂ the integrated absolute error
(IAE) between the original data and the response
of the resulting realization, including the added

time delay z−d̂, is minimal. Note that a reason-
able value for the upper bound d̂max is helpful to
minimize computational efforts.

2.2 Experimental set-up

Experiments where done with a Varipack 28000
control valve. The experimental set-up is depicted
in Fig. 1. The valve is activated through an
electro-mechanical actuator that is pneumatically
powered and controlled by a 4–20 mA current.
The actuator adjusts the position of the valve
stem through a set of adjustable levers and beams.
It was verified that the static relation between
actuator input and valve displacement is linear
and that hysteresis in the valve is negligible.

The displacement y of the valve stem was mea-
sured by means of a linear variable differential
transformator with a range of 2.54 mm, a sensitiv-
ity of 0.39 mm/V, and a cut-off frequency (−3 dB)
of 30 Hz. For data-acquisition a Siglab system
with anti-aliasing filters and AD/DA converters
was used. This system was also used to generate
an input signal for the valve. This voltage signal
was converted to a current by a galvanic standard-
signal isolator with a cut-off frequency > 10 kHz.

3. CONTROL VALVE DYNAMICS

This section deals with the application of the
approximate realization algorithm and time de-
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Fig. 1. Experimental set-up.
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Fig. 2. Measured FRF of valve.

lay estimation method to the control valve un-
der study. First, various measurement results are
presented. These results serve both as a reference
and a motivation for further analyses. Then the
performed time delay estimation and model iden-
tification from the measurements are addressed
and the obtained results are discussed.

3.1 Measurements

With the experimental set-up as described in the
previous section, it was possible to measure the
frequency response function (FRF) of the control
valve. In order to obtain an accurate measurement
for the low bandwidth valve (around 2 Hz) with
sufficient frequency resolution, a stept sine mea-
surement was performed. In total 500 logarithmi-
cally spaced points of the FRF were measured in
the range of 0.1–50 Hz. For each frequency point
the average value of 5 measurements was taken
and the accuracy of the input frequency was ±0.1
Hz for each point. The resulting FRF is shown in
Fig. 2.
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Fig. 3. Step input (- -) and response (-) signals
with As = 16 mA.

It appeared to be difficult to obtain a state space
representation that accurately describes the mea-
sured FRF with standard frequency domain fit-
ting techniques. Therefore, step response mea-
surements were performed such that the approx-
imate realization algorithm could be applied to
obtain a state space model for the valve dynam-
ics. Because the presented algorithm requires an
impulse response sequence, numerical differentia-
tion of the measured step response sequences was
required. This will be discussed in more detail in
the next section.

Step response measurements were carried out for
different step sizes As, namely 4, 8, 12, and 16 mA,
corresponding to 25, 50, 75, and 100 % of the full
valve range. For each condition 10 measurements
(denoted by No. 1 to 10) were done with a sample
time Ts of 7.8125 · 10−4 s (yielding a Nyquist
frequency of 500 Hz). The applied step input
and the resulting valve response of one particular
measurement with As = 16 mA (100 %) are shown
in Fig. 3. Note that the actual step is applied
just after 3 seconds in order to assure that the
system is in a steady-state before the step is
applied. The sharp peaks in the input signal are
due to imperfections in the driving electronics but
their duration is sufficiently short to neglect their
influence.

In Fig. 4 a detail of the previous figure is shown
that reveals the presence of a time delay in the
control valve system. From simulation results it
is known that such a time delay will have a
negative effect on the achievable accuracy of the
approximate realization algorithm. Therefore, an
estimate d̂ of this time delay is required, such
that it can be properly taken into account when
the approximate realization algorithm is applied.
Estimating the time delay and obtaining a state
space model for the valve from step response
measurements, will be treated in the next section.
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Fig. 4. Delay of approximately τ seconds in step
response signal with As = 16 mA.

3.2 Model identification

As mentioned in the previous section, numerical
differentiation of the measured step responses is
required to obtain an impulse response sequence
to which the approximate realization algorithm
can be applied. Differentiation was performed
with a third order central difference approxima-
tion, yielding errors of O(T 4

s ). The resulting im-
pulse response sequences were subsequently fil-
tered through a 5th order, low-pass Butterworth
filter with a cut-off frequency of 50 Hz, to remove
high frequent noise.

After this pre-processing, the impulse response
sequences were then applied to the proposed time
delay estimation method. Note that either the
impulse response data or the resulting approxi-
mate realizations must be properly scaled, since
the algorithm is based on the response to a unit
impulse function. Because the singular values of
the Hankel matrix HE only gave a rough indica-
tion for an appropriate order of the approximate
realization (see Fig. 5), a suitable value for ρ was
determined by trial and error with various values
in the range 1–8, yielding ρ = 3. Furthermore, the
length n of the impulse response sequences was
set to 1000 samples and d̂max was set to 100.

The resulting IAE as function of the delay d̂ is
shown in Fig. 6 for one particular measurement
(no. 5 with As = 16 mA). The corresponding
impulse response of the approximate realization,
with the delay value that resulted in a minimal
IAE, is shown in Fig. 7, together with the differ-
entiated measurement data.

For other measurements with the same and other
step sizes, similar results were obtained. From the
IAE(d)-curves the time delay estimate was ob-

tained by determining for which delay value d̂ the
IAE was minimal. The results for all experiments
are summarized in Table 1. By calculating the
mean of these results after removing the three
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Fig. 5. First 30 singular values of HE for a
measurement with As = 16 mA.
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Fig. 7. Normalized impulse responses ȳ of realiza-
tion (- -) with d̂ = 37 and measurement No.
5 (-) with As = 16 mA.

smallest and highest values, the time delay es-
timate was determined, yielding d̂ = 37 with a
variance σ2 = 2. It was confirmed through visual
inspection of the raw data that the obtained delay
value is accurate.

Finally, in order to obtain a state space rep-
resentation for the control valve dynamics, the
approximate realization algorithm was applied to

Table 1. Estimated time delay values for
measurements with different step sizes.

No. 16 mA 12 mA 8 mA 4 mA

1 38 37 37 37
2 37 34 38 38
3 38 37 38 38
4 36 38 38 37
5 37 37 35 38
6 34 37 32 38
7 34 37 38 38
8 33 35 38 38
9 36 36 34 35
10 38 34 33 38
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Fig. 8. Measured FRF data (-) and FRF of final
approximate realization (- -).

the impulse response sequence that yielded the
smallest IAE value for all measurements (no. 2
with As = 16 mA), where the previously deter-
mined time delay was taken into account. To-
gether with the measured FRF of the valve, the
FRF of the obtained state space model is shown
in Fig. 8. Comparing the FRF data shows that
the approximate realization algorithm, in combi-
nation with the time delay estimation method,
provides a reasonable state space model for the
valve dynamics in the range of 0.01–13 Hz. It was
verified that the frequency of 13 Hz coincides with
the frequency above which the coherence of the
FRF measurement starts to drop significantly.

Note however, that there are still quit some dif-
ferences visible between the two FRFs. Neverthe-
less, the small variance of the time delay estimate
indicates that these differences did not have a
significant influence on the time delay estimation.

4. CONCLUSIONS

This paper discussed the application of an approx-
imate realization algorithm to obtain a state space
realization from impulse response data. In order to
deal with the time delay present in the system un-
der study, a time delay estimation method was ap-
plied. Both frequency response and step response



measurements were performed on an experimen-
tal set-up for a control valve. The results from
the application of the described methods on the
experimental data were presented and discussed.

The results showed that the time delay estimation
method provided a good estimate for the time
delay in the valve system. In addition, by taking
the time delay into account, an approximate state
space realization could be obtained for the valve
dynamics with reasonable accuracy.

Given these encouraging results, it seems worth-
while to generalize the results obtained with the
estimation method to other dynamical systems.
Furthermore, the robustness and the statistical
properties of the time delay estimator should be
investigated. Finally, attention should be paid to
the influence of measurement noise on the approx-
imate realization algorithm in order to make the
algorithm better suitable as an identification tool.
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