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Abstract: In this paper we show how to formulate a boundary control system in
terms of the system node, that is, as an operator S :=

[
A&B
C&D

]
: D(S) → [ X

Y ] where
X is the state space and Y is the output space. Here we give results which show
how to find the top part of this operator and its domain in an easy way. For a
class of boundary control systems, associated with a skew-symmetric differential
operator, we completely identify the system node. Some results about stability
and approximate observability are presented for this class of systems. Copyright
c©2005 IFAC
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1. INTRODUCTION

Many finite- and infinite-dimensional linear sys-
tems can be described by the equations

ẋ(t) = A x(t) + B u(t)
y(t) = C x(t) + D u(t), t ≥ 0, (1)
x(0) = x0

on the Hilbert spaces, namely, the input space U ,
the state space X and the output space Y , where
u(t) ∈ U , x(t) ∈ X and y(t) ∈ Y . The operator
A is generally the generator of a C0-semigroup.
Here the operators B and C are not necessarily
bounded.

The system node (see (Staffans, 2005), (Malinen
et al., 2003, §2)) has been introduced as a gener-
alization of this set of equations for the infinite-
dimensional case. The system node can be thought

of as the block operator S =
[

A&B
C&D

]
from X × U

to X×Y , which allows to replace equation (1) by(
ẋ(t)
y(t)

)
= S

(
x(t)
u(t)

)
, t ≥ 0, x(0) = x0.

However, it is not obvious how to represent bound-
ary control systems of the form (Curtain and
Zwart, 1995, §3.3)

ẋ(t) = Ax(t)
u(t) = B x(t) (2)
y(t) = C x(t),

either as the set of equations (1) or as a system
node.

This paper describes how to formulate a bound-
ary control system (BCS) as a system node. It
presents results that are easy to apply. Finally, we



focus on BCS associated with a skew-symmetric
differential operator.

The organization of the paper is as follows. In
Section 2 the definition of system node is given,
as well as some of its properties. In Section 3
our class of boundary control systems will be
presented. The relation between system nodes
and BCS is presented in Section 4, together with
the results that help to formulate BCS as a
system node. Here we use the notation [ X

Y ] for
X × Y and F|D denotes the restriction of an
operator F to the subspace D. ρ(F ) denotes
the resolvent set of F . HN ((a, b); Rn) denotes
the space of N -times differentiable L2((a, b); Rn)
functions. R+ and R− are the set of nonzero
positive and negative numbers, respectively.

2. SYSTEM NODE

In this section a class of infinite-dimensional sys-
tems, called system nodes, are described. In order
to give a proper definition of the system node we
introduce the following proposition, see (Staffans,
2005, §3).

Proposition 1. ((Malinen et al., 2003)). Let X be
a Hilbert space and let A : D(A) ⊂ X → X be
a closed, densely defined linear operator with a
nonempty resolvent set ρ(A). Take α ∈ ρ(A).

(i) Let X1 = D(A) and define ‖x‖X1
=

‖(α−A)x‖X . Then ‖·‖X1
is a norm on X1

which makes X1 into a Hilbert space, and
A ∈ L(X1;X). The operator (α−A)−1 maps
X isometrically onto X1.

(ii) Let X−1 be the completion of X with respect
to the norm ‖x‖X−1

=
∥∥(α−A)−1x

∥∥
X

.
Then X is continuously and densely embed-
ded in X−1, and A has a unique extension to
an operator Ae in L(X;X−1). The operator
(α− Ae)−1 maps X−1 isometrically onto X.
Moreover, Ae and A are unitarily similar:
Ae = (α−Ae)A(α−Ae)−1.

(iii) If A is the generator of a C0-semigroup T (t)
on X, then the restriction T1(t) = T (t)|X1

of T (t) to X1 is a C0-semigroup on X1.
The semigroup T (t) has a unique extension
to a C0-semigroup Te(t) on X−1 which is
unitarily similar to T (t), since Te(t) = (α −
Ae)T (t)(α−Ae)−1.

Note that X1 ⊂ X ⊂ X−1 with continuous
and dense embedding. Often X−1 is defined in
an equivalent way as the dual of D(A∗). Dual
version of the spaces X1 and X−1 can also be
constructed by replacing A with the adjoint, A∗,
of A. The resulting spaces are denoted by Xd

1 (the
equivalent of X1) and by Xd

−1 (the equivalent of
X−1) respectively. It can be checked that Xd

−1 is

the dual of X1 with respect to the pivot space
X. Likewise, Xd

1 is the dual of X−1. Thus, A∗
e ∈

L(X;Xd
−1) can be interpreted as the (bounded)

adjoint of the operator A ∈ L(X1;X).

All this is well-know and it is used often in the
theory of infinite-dimensional systems.

Now it is possible to define the system node as
follows

Definition 2. ((Malinen et al., 2003)). Let U , X,
and Y be Hilbert spaces. An operator

S :=
(

A&B
C&D

)
: D(S) →

(
X
Y

)
is called an operator node on (U,X, Y ) if it has
the following structure:

(i) A is a densely defined operator on X with a
nonempty resolvent set (which we extend to
an operator Ae ∈ L(X;X−1) as explained in
Proposition 1);

(ii) B ∈ L(U ;X−1);

(iii) D(S) =
{(

x
u

)
∈

(
X
U

) ∣∣∣∣ Aex + B u ∈ X

}
;

(iv) A&B = [Ae B]|D(S);
(v) C&D ∈ L(D(S);Y ) with respect to the

graph norm of A&B (with values in X):∥∥∥∥(
x
u

)∥∥∥∥2

S
:= ‖x‖2X + ‖u‖2U + ‖Aex + Bu‖2X .

(3)

If in addition to the above, A generates a C0-
semigroup on X, then S is called a system node.

From the boundedness of the operators Ae and B
combined with the characterization of D(S) it is
not difficult to show that the system node S is a
closed operator. It can also be shown that D(S)
is dense in [ X

U ].

It is known (see (Malinen et al., 2003)) that if A
is the generator of a C0-semigroup then S defines
a linear dynamical system as follows

Proposition 3. ((Malinen et al., 2003)). Let S be
a system node on (U,X, Y ). Let u ∈ C2([0,∞);U)
and

[ x0
u(0)

]
∈ D(S). Then the equation(

ẋ(t)
y(t)

)
= S

(
x(t)
u(t)

)
, t ≥ 0, x(0) = x0,

has a unique (classical) solution [ x
y ] satisfy-

ing x ∈ C1([0,∞);X) ∩ C2([0,∞);X−1), [ x
u ] ∈

C([0,∞);D(S)), and y ∈ C([0,∞);Y ).

3. BOUNDARY CONTROL SYSTEMS (BCS)

As mentioned earlier the class of BCS described
here are based on (Curtain and Zwart, 1995, §3.3).
That is, BCS of the form



ẋ(t) = Ax(t), x(0) = x0,

u(t) = B x(t), (4)

where A : D(A) ⊂ X → X, u(t) ∈ U , a separable
Hilbert space, and the boundary operator B :
D(B) ⊂ X → U satisfying D(A) ⊂ D(B), and

Definition 4. The control system (4) is a bound-
ary control system if the following hold:

a. The operator A : D(A) → X with D(A) =
D(A) ∩ ker(B) and

A x = Ax for x ∈ D(A)

is the generator of a C0-semigroup on X.
b. There exists a B ∈ L(U,X) such that for all

u ∈ U , Bu ∈ D(A), the operator AB is an
element of L(U,X) and BBu = u for u ∈ U .

4. RELATION OF SYSTEM NODES AND BCS

In the previous two sections the system node and
BCS were discussed. Now it is possible to present
some results which relate both representations. To
avoid confusion, the control operator of the system
node B given in Definition 2 (ii) will be denoted
by Bnode.

Observe that it is not obvious how to find the
Bnode operator in the case of BCS. For those cases
we have the following lemma, which is proved
in (Emirsjlow and Townley, 2000).

Lemma 5. In the case of boundary control sys-
tems as described in Definition 4, the following
relation holds

Bnode u = −AeBu + ABu, (5)

or equivalently

< x |Bnode u >D(A∗),D(A∗)′

= −〈A∗x, B u〉+ 〈x,AB u〉. (6)

Observe that by using equation (6) it is possible
to compute Bnode with A∗ instead of Ae, which
avoids the need of finding the extension, Ae, of A.

Regarding the characterization of D(S) as de-
scribed in Definition 2 (iii) the following result
gives a convenient representation for this domain,
which also avoids Ae.

Lemma 6. For a boundary control system the
condition Aex + Bnodeu ∈ X on the system node
is equivalent to the condition (x−Bu) ∈ X1. That
is

Aex + Bnodeu ∈ X ⇐⇒ x−Bu ∈ X1 (7)

and hence the domain of S can be described as

D(S) =
{(

x
u

)
∈

(
X
U

) ∣∣∣∣ x−Bu ∈ X1

}
.

Furthermore the norm given by (3) is equivalent
to the norm

‖x‖2X + ‖u‖2U + ‖x−Bu‖2X1
.

PROOF. First condition (7) is proved. Let Aex+
Bnodeu ∈ X. Then we have that

Aex + Bnodeu ∈ X

⇐⇒ (α−Ae)−1(Aex + Bnodeu) ∈ D(A)

⇐⇒ (α−Ae)−1Aex + (α−Ae)−1Bnodeu ∈ D(A)

and using equation (5) gives

Aex + Bnodeu ∈ X

⇐⇒ (α−Ae)−1Aex

+ (α−Ae)−1(−AeBu + AB u) ∈ D(A)

⇐⇒ (α−Ae)−1Ae(x−Bu)

+ (α−Ae)−1AB u ∈ D(A). (8)

Recall that AB ∈ L(U,X) and observe that
(α − Ae)−1 when restricted to X is equal to
the inverse of the resolvent of the semigroup
generator, (α − A)−1. It thus follows that that
(α − Ae)−1AB u(t) ∈ D(A) and hence the condi-
tion (8) is equivalent to

Aex+Bnodeu ∈ X

⇐⇒ (α−Ae)−1Ae(x−Bu) ∈ D(A)
⇐⇒ Ae(x−Bu) ∈ X

⇐⇒ x−Bu ∈ D(A).

Next the proof of the equivalence of the norms is
shown. Let [ x

u ] ∈ D(S), thus

‖Aex + Bnodeu‖X

=
∥∥(α−Ae)(α−Ae)−1(Aex + Bnodeu)

∥∥
X

.

Since (Aex + Bnodeu) ∈ X one can conclude that
(α−Ae)−1(Aex+Bnodeu) ∈ D(A) = X1 and since
(α − Ae)D(A) = (α − A)D(A) one gets from the
equation above that

‖Aex + Bnodeu‖X

=
∥∥(α−Ae)−1(Aex + Bnodeu)

∥∥
X1

=
∥∥(α−Ae)−1(Aex−AeBu + ABu)

∥∥
X1

(see (5))

≤
∥∥(α−Ae)−1Ae(x−Bu)

∥∥
X1

+ ‖ABu‖X

=
∥∥(α−Ae)−1(Ae − α + α)(x−Bu)

∥∥
X1

+ ‖ABu‖X

≤ ‖x−Bu‖X1
+ |α| ‖x−Bu‖X + c1 ‖u‖U

≤ ‖x−Bu‖X1
+ |α| ‖x‖X + c2 ‖u‖U (9)

Now let x−Bu ∈ D(A) and observe that



‖x−Bu‖X1

= ‖(α−A)(x−Bu)‖X = ‖(α−Ae)(x−Bu)‖X

= ‖αx− αBu−Aex + AeBu‖X

≤ |α| ‖x‖X + c3 ‖u‖U + ‖Aex−AeBu‖X

= |α| ‖x‖X + c3 ‖u‖U

+ ‖Aex−AeBu + ABu− ABu‖X

≤ |α| ‖x‖X + c3 ‖u‖U + ‖Aex + Bnodeu‖X

+ ‖ABu‖X (see (5)
≤ |α| ‖x‖X + c4 ‖u‖U + ‖Aex + Bnodeu‖X .

(10)

equations (9) and (10) show that the two norms
are equivalent. 2

5. BCS RELATED TO SKEW-ADJOINT
OPERATOR

In the paper by (Le Gorrec et al., 2004) the
authors associate a C0-semigroup with some pa-
rameterization of the boundary port variables and
define a family of boundary control systems. The
form of the main operator studied by them is

J e =
N∑

i=0

P (i)
die

dzi
(z) z ∈ [a, b] , (11)

where e ∈ C∞((a, b); Rn) and P (i), i = 0, . . . , N ,
is a n × n real matrix. Since J is assumed to be
skew-symmetric we have

P (i) = P (i)T (−1)i+1. (12)

Here we study the case when N = 1 and P (1)
is assumed to be non-singular. This case includes
the well-known wave and beam equations.

Definition 7. The boundary port variables associ-
ated with the differential operator J for N = 1
are the vectors e∂ , f∂ ∈ Rn, defined by(

f∂

e∂

)
= Rext

(
e(b)
e(a)

)
, (13)

where Rext is given by

Rext =
1√
2

(
P (1) −P (1)

I I

)
. (14)

In (Le Gorrec et al., 2004) the authors prove the
following theorem.

Theorem 8. Let W = S
(
I + V I − V

)
, with S

invertible and V V T ≤ I, be a full rank matrix of
size n×2n, and define B : H1((a, b), Rn) → Rn as

Bx(t) := W

(
f∂(t)
e∂(t)

)
. (15)

Then the system

ẋ(t) = J x(t),
Bx(t) = u(t) (16)

is a boundary control system, where AW = J| kerB
is the generator of a contraction semigroup with

D(AW ) = {x ∈ L2((a, b), Rn) |
(

f∂

e∂

)
∈ ker W}.

Furthermore, if we define the linear mapping C :
H1((a, b), Rn) → Rn as

Cx(t) := S2

(
I − V T −I − V T

) (
f∂(t)
e∂(t)

)
(17)

with S2 invertible and the output as

y(t) = Cx(t), (18)

then for u ∈ C2((0,∞); Rn) and x(0) − Bu(0) ∈
D(AW ) the following balance equation is satisfied:

1
2

d

dt
‖x(t)‖2 =

(
uT (t) yT (t)

)
PW

(
u(t)
y(t)

)
, (19)

where PW is given by
1
4

(
S−T (P̃ 2

1−P̃1V V T P̃1)S
−1 −2S−T P̃1V P̃2S−1

2

−2S−T
2 P̃2V T P̃1S−1 S−T

2 (−P̃ 2
2 +P̃2V T V P̃2)S

−1
2

)
,

(20)

and P̃1 = (I + V V T )−1, P̃2 = (I + V T V )−1.

Regarding this type of systems we have the fol-
lowing results.

Theorem 9. The boundary control system defined
in Theorem 8 is approximately observable.

PROOF. If u and y are set to zero, then all
the boundary conditions are equal to zero. In
this case, it is not difficult to show that the
partial differential equation given by (16) has the
unique solution x(t) = 0. Hence the state x(t) is
zero. Consequently, the system is approximatively
observable. 2

It is now clear how to construct the domain of
the system node and the operators A and Bnode

for the BCS of Theorem 8. It can be constructed
using the procedure described in Section 4. The
only thing left to prove is that the operator C&D
given by the right hand side of (17) is bounded
with respect to the norm in (3) (see Definition 2).

Theorem 10. Consider the system (16) with

J e = P0 e(z) + P1
de

dz
(z)

and output (17). Then this system can be de-
scribed by a system node with

A&B = [Ae Bnode]|D(S),

D(S) =
{(

x
u

)
∈

(
X
U

) ∣∣∣∣ x−Bu ∈ X1

}
,

C&D

(
x(t)
u(t)

)
= S2

(
I − V T −I − V T

) (
f∂(t)
e∂(t)

)
,

and Bnode is given by (5).



PROOF. We need to check that the five con-
ditions in Def. 2 are satisfied. Condition (iv) is
obvious. Condition (i) is a consequence of The-
orem 8, since there it is proved that the sys-
tem (16) is a BCS (see Def. 4) and since every
semigroup generator is closed and densely defined.
Condition (ii) follows easily from equation (6).
Condition (iii) follows from Lemma 6. Next we
prove the boundedness of C&D. First observe that

C&D

(
x
u

)
= S2

(
I − V T −I − V T

) (
f∂

e∂

)
= S2

(
I − V T −I − V T

) (
P1 −P1

I I

) (
x(b)
x(a)

)
= C1 x(b) + C2 x(a)

where C1 = S2[(I − V T )P1 − (I + V T )] and
C2 = −S2[(I −V T )P1 +(I +V T )]. It thus follows
that for any [ x

u ] ∈ D(S)∥∥∥∥C&D

(
x
u

)∥∥∥∥2

Rn

= ‖C1 x(b) + C2 x(a)‖2Rn

≤ 2 ‖C1 x(b)‖2Rn + 2 ‖C2 x(a)‖2Rn

and using Lemma 13 gives

≤ 4(b− a)
∥∥∥∥C1

dx

dz
(z)

∥∥∥∥2

X

+
4

(b− a)
‖C1x(z)‖2X

+ 4(b− a)
∥∥∥∥C2

dx

dz
(z)

∥∥∥∥2

X

+
4

(b− a)
‖C2x(z)‖2X

≤ k1

∥∥∥∥dx

dz
(z)

∥∥∥∥2

X

+ k2 ‖x(z)‖2X

≤ k1

∥∥P−1
1

∥∥2
∥∥∥∥P1

dx

dz
(z) + P0x(z)− P0x(z)

∥∥∥∥2

X

+ k2 ‖x(z)‖2X
≤ k̃1 ‖J x(z)‖2X + k̃2 ‖x(z)‖2X
≤ 2k̃1 ‖−(α− J )(x(z)−Bu)‖2X

+ 2k̃1 ‖αx(z)− (α− J )Bu‖2X + k̃2 ‖x(z)‖2X .

By the characterization of D(S) and since [ x
u ] ∈

D(S) it follows that x − Bu ∈ D(A) and hence
J = A. Also recall that JB is a bounded operator
(see Def.4.b). From this we see that∥∥∥∥C&D

(
x
u

)∥∥∥∥2

Y

≤ c1 ‖(α−A)(x−Bu)‖2X

+ c2 ‖x‖2X + c3 ‖u‖2X
= c1 ‖x−Bu‖2X1

+ c2 ‖x‖2X + c3 ‖u‖2X ,

where c1, c2, c3 ∈ R are positive constants. Using
Lemma 6 we can see that the inequality above
implies boundedness of C&D with respect to the
norm in (3). 2

Theorem 11. Consider the BCS of Theorem 8
with

J e = P1
de

dz
(z).

(i) If V = 0, then this system is exponentially
stable.

(ii) If the matrix PW in (20) is given by

PW =
(

I 0
0 −I

)
, (21)

or equivalently, if the balance equation (19)
is given by 1

2
d
dt‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2,

then the system is exponentially stable and
exactly observable in finite time.

PROOF. (i) Observe that if V = 0 then W has
the form W = S

(
I I

)
.

In order to check stability of the system it is nec-
essary to study the resolvent of AW = J|D(AW ).
Let x ∈ D(AW ) and observe that y(z) = (λ −
AW )x(z) = λ x(z)− P1

dx
dz (z). Thus

dx

dz
(z) = λ P−1

1 x(z)− P−1
1 y(z)

need to be solved. The general solution is given by

x(z) = eλP−1
1 (z−a) c−

∫ z

a

eλP−1
1 (z−τ) P−1

1 y(τ) dτ,

(22)
where c is a constant vector. Since x ∈ D(AW )
the boundary conditions (see Theorem 8) are
described by

WRext

(
x(b)
x(a)

)
= 0

⇐⇒
(
P1 + I I − P1

) (
x(b)
x(a)

)
= 0. (see Def. 7)

Using (22) in the equation above yields

(P1 + I)

[
eλP−1

1 (b−a) c−
∫ b

a

eλP−1
1 (b−τ) P−1

1 y(τ) dτ

]
+ (I − P1) c = 0

⇐⇒
[
(P1 + I) eλP−1

1 (b−a) +(I − P1)
]

c =

(P1 + I)
∫ b

a

eλP−1
1 (b−τ) P−1

1 y(τ) dτ.

It follows from Lemma 14 that when λ ∈ C \R−
the matrix on the left hand side is nonsingular. In
that case, c can be defined uniquely, which implies
that (λ − AW )−1 exists. Also, it is not difficult
to show that (λ− AW )−1 is bounded, hence (22)
defines the resolvent operator of AW .

When λ is a pure imaginary number, the resol-
vent (22) is clearly a uniformly bounded operator
since P1 has only real eigenvalues and hence the
magnitude of eλP−1

1 z is equal to one. Since AW

generates a contraction semigroup it thus follows
that the conditions of Theorem 15 are satisfied,
which proves the assertion.

(ii) Observe that in this case we also have V = 0,
and hence the system is exponentially stable. Fi-
nally, from Theorem 11.3.8 of (Staffans, 2005) one
can see that the system is also exactly observable
in finite time. 2



Remark 12. From the proof of Theorem 11 and
Lemma 14 one can see that the eigenvalues (if
they exist) of AW are located in R−.

6. CONCLUSION

The notion of system node and boundary control
systems were studied in this paper. A relation
between both was presented. We studied a spe-
cific type of systems which are related to a skew-
symmetric differentiable operator, for which we
showed how to obtain the system node. We also
showed that this type of systems is approximately
observable. This results also holds for the general
differential operator given in (11). Finally, we
showed that it is not difficult to obtain an expo-
nentially stable system for a subclass of systems.

7. APPENDIX

The following result is not difficult to prove and
it is used in the proof of Theorem 10.

Lemma 13. Let x(z) ∈ H1((a, b); Rn). Then we
have that

|x(a)|2 ≤ 2(b− a)
∥∥∥∥dx

dz
(z)

∥∥∥∥2

X

+
2

(b− a)
‖x(z)‖2X ,

and

|x(b)|2 ≤ 2(b− a)
∥∥∥∥dx

dz
(z)

∥∥∥∥2

X

+
2

(b− a)
‖x(z)‖2X .

The next Lemma is used in the proof of Theo-
rem 11.

Lemma 14. If the matrix P1 is symmetric and
nonsingular then[

(P1 + I) eλP−1
1 (b−a) +(I − P1)

]
is nonsingular if λ ∈ C \R−. That is, the set of
possible λ’s that make it singular are located in
the negative real axis, (−∞, 0).

PROOF. First, recall that P1 is symmetric and
nonsingular. Hence it can be diagonalized, that
is P1 = R1DR−1

1 and P−1
1 = R1D

−1R−1
1 , where

R1 is an orthogonal matrix and D is a diagonal
matrix containing the eigenvalues of P1 in de-
scending order. Thus that matrix is nonsingular
iff the matrix

R1(D + I)R−1
1 R1 eλD−1(b−a) R−1

1 + R1(I −D)R−1
1

is nonsingular. Equivalently, iff

(D + I) eλD−1b +(I −D)

is nonsingular. This is the same as the diagonal
matrix(

(D1+I) e
λD

−1
1

b
+(I−D1) 0

0 (I−D2) e
−λD

−1
2

b
+(I+D2)

)
(23)

being nonsingular, where D1 is a diagonal matrix
containing the positive eigenvalues of P1 and
−D2 contains the negative eigenvalues. Observe
that (23) is diagonal and every element of the
upper block has the form (σ+1) eλk +(1−σ) where
σ > 0 and k > 0 are real numbers. Notice that

(σ + 1) eλk +(1− σ) = 0

⇒ eλk =
σ − 1
σ + 1

⇒ eλk < 1
⇒ λ ∈ R−.

Hence the set of possible λ’s that make the upper
block of (23) singular are located in (−∞, 0).
Using a similar argument it can be proved the
same result for the lower block of (23). Altogether
proves the lemma. 2

Theorem 15. (Luo et al., 1999, Corollary 3.36)
Let T (t) be a uniformly bounded C0-semigroup on
a Hilbert space H with generator A. Then T (t) is
exponentially stable if and only if iR ⊂ ρ(A) and

M0 := sup
w∈R

∥∥(iw −A)−1
∥∥ < ∞.
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